• Title/Summary/Keyword: Mooring force

Search Result 132, Processing Time 0.032 seconds

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

A Study on Offshore Ship-to-Ship Mooring Characteristics through Numerical Analysis (수치해석을 통한 해상 Ship-to-Ship 계류 특성에 관한 연구)

  • Lee, Sang-Won;Lee, Yun-Sok;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.135-137
    • /
    • 2019
  • In recent years, the need for ship-to-ship has emerged around the world as the volume of tanker carriers increases. In the case of STS mooring, a safety review should be carried out on other standards since the characteristics are different from the mooring at a typical wharf. However, there is no separate standard about STS in Korea. Therefore, in this study, STS mooring simulation and sensitivity analysis were performed using OPTIMOOR program, a commercial numerical analysis program, to identify STS mooring characteristics. The target sea area is modeled at D2 anchorage of Yeosu Port in Korea, and modeling of the target ship is selected as the case of VLCC-VLCC. Based on this, we tried to establish the standard for STS mooring safety evaluation. Numerical simulation results show that the STS mooring changes depending on the ship load condition, weather condition(wave period and wave height), encounter angle and pre-tension of mooring line. In addition, a risk matrix was created to set the safe external force range in the sea area. It is expected that the mooring characteristics of the STS can be grasped by this result and contribute to the revision of the mooring safety assessment standard.

  • PDF

Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility- (생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구-)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

A Study on the Design of Dolphin System for VLFS (부유식 해양구조물을 위한 돌핀 계류시스템의 설계 연구)

  • Cho Kyo-Nam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.105-111
    • /
    • 2006
  • Dolphin mooring system can be a good candidate for the VLFS fastening system in view point of strength and effectiveness. In the design process of the dolphin system, precise calculation of the wave forces and the subsequent selecting the proper number of the piles adopted are one of the main factors. In this paper, one of the design process of the dolphin system is investigated and a proper configuration of the system is derived based on the structural characteristics of the system that was obtained through the structural analysis of the basic pile element confronted to the external loadings including wave impact load. It was found that lot the better design of ihe mooring system for VLFS, mono pile mooring system is more recommendable in a specific condition than other multi piles mooring system.

Nonlinear Motion Responses for A Moored Ship beside Quay (안벽에 계류된 선박에 대한 비선형 운동응답)

  • Lee, Ho-Yooung;Lim, Choon-Gyu;Lew, Jae-Moon;Chun, In-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.172-178
    • /
    • 2003
  • As a typoon gets into harbour, a moored ships shows erratic motions and even mooring line failures is occurred. Such troubles may be caused by harbour resonance phenomena, result in large motion amplitudes at law frequency, which is closed to the natural frequency of the moored ship. The nonlinear motions of a moored ship beside quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from emperical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

  • PDF

Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces (강한 인장 상태에서의 계류 체인 링크의 휨 거동)

  • Kim, Seungjun;Won, Deok-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2017
  • This paper presents the study of the bending behavior of mooring chain links for keeping the position of the offshore floating structures. In general, chain links have been thought as the axial members due to the fundamental boundary condition. But, the flexural stiffness can be induced to the contact surface between chain links when friction occurs at the surface of the chain links due to high tensile force. Especially, the mooring chains for offshore floating platforms are highly tensioned. If the floater suffers rotational motion and the mooring chain links are highly tensioned, the rotation between contact links, induced by the floater rotation, generates the bending moment and relevant stresses due to the unexpected bending stiffness. In 2005, the mooring chain links for the Girassol Buoy Platform were failed after just 5 months after facility installation, and the accident investigation research concluded the chain failure was mainly caused by the fatigue due to the unexpected bending stress fluctuation. This study investigates the pattern of the induced bending stiffness and stresses of the highly tensioned chain links by nonlinear finite element analysis.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

Dynamic Analysis for the Mooring Safety at KwangYang Port (광양 제품부두의 계류안정성 해석)

  • Kim, Young-Bok;Jeong, Tae-Gweon;Kim, Se-Won;Kim, Jung-Yeop;Kim, Young-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.423-428
    • /
    • 2010
  • This study is aiming to find one of reasonable guidelines to select a proper berthing ship at Kwang Yang harbors for loading/unloading for the POSCO(Pohang Steel Co. Ltd.). For dynamic analysis for the moored ships, the selection of subjected vessels has to be given the priority, so that the motion characteristics are figured out. The calculation of the dynamic fluid forces and wave, wind and current forces in time domain are followed. Then, the dynamic mooring analyses are performed. This study might contribute to make a new guideline by which the proper sized and loaded ships could be moored safety at the berths of Kwang Yang Harbor.

An Aquaculture System Concept for Ocean Application (해양양식전진기지 개념설계)

  • Go, Yu-Bong;Choi, Young-Chan;Kim, Seoung-Gun;Park, Ro-Sik;Lee, Sang-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.79-82
    • /
    • 2003
  • An aquaculture system for feeding the caged fishes in the open water is suggested for ocean application. Survival and operation conditions are defined at the conceptual design. Wave and current drag forces are discussed to determine the proper dimension of the aquaculture system and the related mooring system. Second order wave drift force at the survival condition is the dominant force, which be reduced by minimizing the superstructure open to the surface. Automation in feeding, sorting, cleaning is introduced to use the ongoing technology for quality product. The suggested system has advantage compared to onshore culturing, but not to shallow water culturing system. There is room for real application in future by the countries, such as Korea and Japan, which are in short of fish supply and have willingness to venture towards the ocean aquaculture.

  • PDF