• Title/Summary/Keyword: Moon Exploration

Search Result 240, Processing Time 0.022 seconds

Exploration of Optimal Product Innovation Strategy Using Decision Tree Analysis: A Data-mining Approach

  • Cho, Insu
    • STI Policy Review
    • /
    • v.8 no.2
    • /
    • pp.75-93
    • /
    • 2017
  • Recently, global competition in the manufacturing sector is driving firms in the manufacturing sector to conduct product innovation projects to maintain their competitive edge. The key points of product innovation projects are 1) what the purpose of the project is and 2) what expected results in the target market can be achieved by implementing the innovation. Therefore, this study focuses on the performance of innovation projects with a business viewpoint. In this respect, this study proposes the "achievement rate" of product innovation projects as a measurement of project performance. Then, this study finds the best strategies from various innovation activities to optimize the achievement rate of product innovation projects. There are three major innovation activities for the projects, including three types of R&D activities: Internal, joint and external R&D, and five types of non-R&D activities - acquisition of machines, equipment and software, purchasing external knowledge, job education and training, market research and design. This study applies decision tree modeling, a kind of data-mining methodology, to explore effective innovation activities. This study employs the data from the 'Korean Innovation Survey (KIS) 2014: Manufacturing Sector.' The KIS 2014 gathered information about innovation activities in the manufacturing sector over three years (2011-2013). This study gives some practical implication for managing the activities. First, innovation activities that increased the achievement rate of product diversification projects included a combination of market research, new product design, and job training. Second, our results show that a combination of internal R&D, job training and training, and market research increases the project achievement most for the replacement of outdated products. Third, new market creation or extension of market share indicates that launching replacement products and continuously upgrading products are most important.

An unmanned boat capable of real-time video streaming (실시간 영상 스트리밍 무인 보트)

  • Lee, Dong-Hee;Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.537-539
    • /
    • 2016
  • Recently, unmanned technologies interest increased. An unmanned boat is not directly on people and radio can be controlled by boat. Used for military unmanned boat was first developed in the United States Navy. In recent years, for hobby, for pesticide application, for water activities, expanding exploration in various ways, including for use. The role of a variety of unmanned boat above, In the case of a variety of unmanned probe of the role of unmanned boat on the boat people who don't be able to come to the vision of the advantage can not be exploring places like blind spot. In this paper, The Blind Spot are explorations of places such as streaming real-time as possible, an unmanned boat using Raspberry Pi that support implementation. Receiver input signals of an unmanned boat to the transmitter under the manipulation of, using smartphones hotspot feature Raspberry Pi and smartphones, network connection. Via Raspberry Pi motion of using real-time streaming using unmanned boat.

  • PDF

Analysis of Characteristics using Geotechnical Investigation on the Slow-moving Landslides in the Pohang-si Area (포항지역 땅밀림지의 지반조사를 통한 땅밀림 특성 분석)

  • Lee, Moon-Se;Park, Jae-Hyeon;Park, Yunseong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • The aim of this study was to provide basic data that could identify and help prevent a slow-moving landslide using an analysis of the relationship between below-ground characteristics and water from three slow-moving landslide areas in Pohang, Gyeongsangbuk-do, South Korea. Surface surveys, resistivity, seismic exploration, well logging, and boring surveys were conducted in the three areas. The main direction of discontinuous surface was matched with the slope direction of the three landslides. The results indicatedthat slow-moving landslides might occur in the direction of the slope. Underground water was distributed within the crush zones within the three landslide areas and flowed along the tensile cracks. There was a significant difference (p<0.01) between the mean angle of the tensile cracks and that of the underground waterflow (p=0.8019). These results indicated that the progress of a slow-moving landslide can be forecast by monitoring the location and flow of underground water within a known slow-moving landslide area.

Optimization of Material Extruding Performance to Build a 3D Printed Habitat on the Moon and Mars (달, 화성 3D 프린팅 주거지 건설을 위한 재료 사출기능 최적화 연구)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.345-349
    • /
    • 2019
  • The National Aeronautics and Space Administration (NASA) has long been studying the essential elements of manned planetary exploration and has held several international challenges to encourage the research works related to it. One of them was the NASA Centennial Challenge Programs which started in 2015. Following the second in 2017, the third is currently going on in 2019. Participating "3D-Printed Habitat Challenge", one of the challenges in the second program, this research team designed and developed the 3D printer extruding module for the Lunar Simulant (Korea Hanyang Lunar Simulant-1; KOHLS-1) and the polymer. For optimizing the modul, a cylindrical specimen of ${\varnothing}150{\times}300mm^3$ volume and a specimen of $200{\times}100{\times}650mm^3$ volume were manufactured and their compressive and flexural strengths were tested. The findings can help automatize the space construction in the future.

Development of a Method for Analyzing and Visualizing Concept Hierarchies based on Relational Attributes and its Application on Public Open Datasets

  • Hwang, Suk-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.13-25
    • /
    • 2021
  • In the age of digital innovation based on the Internet, Information and Communication and Artificial Intelligence technologies, huge amounts of datasets are being generated, collected, accumulated, and opened on the web by various public institutions providing useful and public information. In order to analyse, gain useful insights and information from data, Formal Concept Analysis(FCA) has been successfully used for analyzing, classifying, clustering and visualizing data based on the binary relation between objects and attributes in the dataset. In this paper, we present an approach for enhancing the analysis of relational attributes of data within the extended framework of FCA, which is designed to classify, conceptualize and visualize sets of objects described not only by attributes but also by relations between these objects. By using the proposed tool, RCA wizard, several experiments carried out on some public open datasets demonstrate the validity and usability of our approach on generating and visualizing conceptual hierarchies for extracting more useful knowledge from datasets. The proposed approach can be used as an useful tool for effective data analysis, classifying, clustering, visualization and exploration.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

A Study on the Effects of Culture and Arts Education to Adolescents' Ego-Resilience (문화예술교육이 청소년의 자아탄력성에 미치는 영향 연구)

  • Yun, Seon Mi;Nam, Sang Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2021
  • Adolescence is a period when ego resilience, the ability to overcome stress, is important because self-identity is not established. Culture and arts education has various effects on the ego resilience of adolescents, so school culture arts education and social culture arts education use teaching and learning methods appropriate to the situation of adolescents. Self-understanding of the effects of culture and arts education has a significant effect on emotional control, vitality, interpersonal relationships, optimism, and curiosity of adolescent ego resilience, On the other hand, it was found that emotional stability among the effects of culture and arts education did not have a significant effect on all factors of adolescent ego resilience. Therefore, it is necessary to prepare a plan to provide opportunities for career exploration as a more practical program for adolescence to understand themselves and develop themselves. In addition, Culture and arts education should be conducted with convergence research that enables youths to maintain good relationships with others, have high self-confidence, and play a role in a wide range of stable and mature lives.

Enhancing Freeze-Thaw Resilience in Adhered Mortar Tile Modules (떠붙임 모르타르 타일 모듈의 동결융해 저항성 평가)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Kim, Moon-Kyu;Choi, Byung-Cheol;Ji, Sung-Jun;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.241-249
    • /
    • 2023
  • The objective of this research was to engineer a tile module that could efficiently curtail the incidence of tile defects during the construction phase. To assess the potential diminution in defect manifestation, we executed experiments centered on surface condition, the variation in mass before and after the freeze-thaw test, and adhesive strength. Our findings demonstrated that thermal contraction and expansion induced a relatively escalated frequency of defects in the underwater setting for the aluminum mesh, while the steel mesh saw a higher defect incidence in the air environment. Additionally, it was noted that the adhesive strength exhibited a trend towards augmentation as the mesh size dwindled. Collectively, these results suggest that the employment of smaller mesh sizes can foster improved adhesive strength, consequently diminishing tile defects. Further exploration and development of the tile module, informed by these insights, can substantially enhance the efficacy of the construction process.

Antioxidant and Antihypertensive Activities of Grains Grown in South Korea in Relation to Phenolic Compound and Amino Acid Contents

  • Narae Han;Koan Sik Woo;Jin Young Lee;Jiho Chu;Mihyang Kim;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.572-580
    • /
    • 2023
  • Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.

Geostationary Satellite Launch Site and Orbit Injection (정지궤도위성 발사위치와 궤도투입에 관한 고찰)

  • DONG-SUN KIM
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • According to the success of the Nuri Space Launch Vehicle (KSLV-II) and the development goal of the next generation space launch vehicle (KSLV-III), it is expected that the domestic geostationary satellite capability will be increased from (1 to 3.7) ton. Also, it is predicted that substantial ability of about 1 ton can be provided for the space exploration of the Moon, Mars, asteroids, etc. The Goheung space launch site is optimized for sun-synchronous small satellites, and due to the essential precondition that the launch trajectory does not impinge another country's sovereign airspace, it is not satisfactory as a geostationary satellite launching site. Its latitude also requires more energy to shape the rotating orbital plane from the initial injection status. This results in a decreasing factor of economic feasibility, including the operating complexity. Therefore, in parallel with the development of a next generation space launch vehicle, the practical process for acquisition of oversea land or sea space launch site near the Earth's equator and research for the optimization of orbiting methods of geostationary satellite injection must be continued.