• Title/Summary/Keyword: Monthly variations

Search Result 370, Processing Time 0.026 seconds

MULTISPECTRAL REMOTE SENSING ALGORITHMS FOR PARTICULATE ORGANIC CARBON (POC) AND ITS TEMPORAL AND SPATIAL VARIATION

  • Son, Young-Baek;Wang, Meng-Hua;Gardner, Wilford D.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.450-453
    • /
    • 2006
  • Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study were used along with remotely sensed data obtained from NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal component analysis (PCA) methods. In Case I and II waters empirical maximized simple ratio (MSR) and model-based PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm for routine use. In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed inter-annual variation in three different locations and may be affected by El $Ni{\tilde{n}}o/Southern$ Oscillation (ENSO) events.

  • PDF

A Study on the Sea Level Variations in Korean Coastal Area (한국연안해역에서의 해면수위의 변동에 관한 연구)

  • 이경연;김동수;손창배;김창제
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • This paper is to estimate the long and short term variations of mean sea level in Korean coastal waters by identifying interrelations among the mean sea level, atmospheric pressure and air temperature along the coast. For this, long-term tidal data observed at tidal and weather observation stations were brought into a statistical analysis. It was noted that, in a general sense, an inverse relationship exists between the sea level and the atmospheric pressure and a positive relationship between the sea level and air temperature, respectively. The maximum difference of monthly mean sea level was in the range of 21 to 25 cm at the eastern and southeastern coasts, meanwhile more than 30 cm being in both in southern and western coasts. It was also noted that mean sea level continues to rise in a long-term basis. Long-term variation of mean sea level trends to rise 0.10 ∼ 0.44 cm per year for each region. However, the long-term variation of mean sea level in the isolated islands shows a different trend, Ullngdo being 0.41 cm fall per year and Chejudo being 0.44 cm rise per year.

  • PDF

Annual Variation of Salinity in the Neighbouring Seas of Korea (韓國周邊 海洋鹽分의 年變化)

  • Kang, Yong Q;Jin, Myoung-Shin
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.105-110
    • /
    • 1984
  • We study the annual variation of salinity at the sea surface and at 30m depth in the neighbouring seas of korea by the harmonic method. The analysis based on the monthly salinity data at 182 stations collected regularly by the Fisheries Research and Development Agency during 15 years (1961∼1975). The annual mean salinity in the West Sea is lower than that in the East Sea. In the amplitude of annual salinity variation decreases and the phase delays with the downstream distance of the Tsushima Current. The salinity at 30m has a higher mean, a smaller amplitude and a delayed phase than the corresponding ones at the surface. The annual variations of salinity in the South and East Seas are caused mainly by the annual variations of the local precipitation and that of the fresh water discharge from the Yangtze River.

  • PDF

Periodic Variations of Water Temperature in the Seas Around Korea(I) Annual and Secular Variations of Surface Water Temperature, Kumun-Do Region, Southern Sea of Korea (한국 근해 수온의 주기적 변화(I) 남해의 거문도해역 표면수온 년주변화 및 영년변화)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.6-13
    • /
    • 1970
  • Ten days and monthly mean temperatures were analysed daily data observed during July, 1916 to March, 1970 statistically. Periodic characters were calculated by Δn, new method of approximate solution of Schuster Method. According to ten days mean temperatures, annual variation function is F($\theta_d$)=16.29-5.27 cos $\theta_d$+0.75 cos2 $\theta_d$-3.14 sin $\theta_d$+1.16 sin2 $\theta_d$-0.63 sin $\3{theta}_d$, where $\theta_d$=$-\frac{\pi}{18}$(d-3), d is the order of ten days period, 1 to 36. Annual mean water temperature is 16.3$^{\circ}C$, minimum in the last ten days of February 10.9$^{\circ}C$, maximum in the last ten days of August 24.5$^{\circ}C$. Periodic character of secular variation shows 11 year and its curve is F($\theta_y$)=16.29+0.53 cos $\theta_y$ -0.16cos $2{\theta}_y$+0.10 cos$3{\theta}_y$-0.10 sin $\theta_y$, where $\theta_y$=2$-\frac{2\pi}{11}$(y-1920), y is calendar year. And the relation between air temperature x and water temprature y is following. y=9.67 1.035$\^x$

  • PDF

Analysis of Air Pollution Concentrations at Cheju Baseline Measurement Station (제주도 고산 측정소에서의 대기오염 배경농도 측정 및 분석)

  • 박경윤;이호근;서명석;장광미;강창희;허철구;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.252-259
    • /
    • 1994
  • A ground station has been established at Kosan, Cheju Island, since January of 1992 for the monitoring of background air Pollutant levels in Korea. Anthropogenic pollutant sources and meteorological conditions of Kosan were surveyed. Concentrations of SO$_2$, NO, NO$_{y}$ and $O_3$, were measured and analyzed for the period of February through December, 1992. The annual means of NO and SO$_2$, levels were very low in comparison to other urban's levels and similiar to other country's background levels. The annual mean of $O_3$, level was higher than urban's but comparable to other coastal region's. The NO concentration showed a distinct seasonal and diurnal variations. Summer peak was detected in the monthly means of NO and smooth peak around noon was found in the annual means of hourly data. Diurnal variation of the SO$_2$ concentration was barely detected but a slice increase in winter was detected. The $O_3$, concentration data, however, showed seasonal and diurnal variations similar to the urban's.an's.

  • PDF

Variations of Abundance and Hatch Timing of Dungeness Crab Larvae in Southeastern Alaska: Implications for Climate Effect

  • Park, Won-Gyu;Shirley, Thomas C.
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.287-295
    • /
    • 2008
  • Variations of larval abundance and hatch timing of Dungeness crabs, Cancer magister Dana 1852, were investigated. Dungeness crab larvae were monthly collected at 16 stations arrayed in four transects, Upper Chatham, Icy Strait, Cross Sound, and Icy Point, in southeastern Alaska from May to September 1997-2004. Larval abundance at all transects was the highest in June except in the Icy Point transect. Larval abundance was the highest in the Icy Strait transect, moderate in the Upper Chatham and Cross Sound transects, and the lowest in the Icy Point transect. Zoeae I(ZI) was predominated in May; thereafter ZI decreased and late zoeal stages occurred. In May and June, small numbers of late stage larvae unusually co-occurred with ZI in three transects. These late stage larvae may have been transported from where hatching occurs earlier. The timing of ZI occurrence varied interannually and was related to degreedays during the egg incubation period of Dungeness crabs: later larval hatching in 1997 and 2002 when temperatures were colder, while earlier larval hatching in 1998 when temperatures were warmer. The distribution patterns of Dungeness crab larvae in southeastern Alaska were markedly different from those reported from other areas of the species distribution ranges: larvae occurring much later in the year, and late stage larvae occurring in inland waters.

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Analysis of Rainfall Change at Seoul City by Applying Multiple Intervention Model (중복간섭모형을 이용한 서울시 강우량 변화분석)

  • Kim, Eung-Seok;Lee, Jeong-Ho;Kim, Joong-Hoon;Park, Moo-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.33-41
    • /
    • 2004
  • The purpose of this study is to analyze the relationship between El Nino phenomena and the monthly rainfall variations of Seoul city which is composed of 30 year data during $1967{\sim}1996$. In this study, the monthly rainfall data at Seoul city is analyzed by applying an intervention model. As it is unavailable to get the data of El Nino phenomena, the point of intervention have been decided from the literature survey of the data observed to be the years of 1972, 1976, 1979, 1982, 1986 and 1991. As a results the El Nino was revealed more significant to the monthly rainfall at Seoul. In addition, monthly rainfall varied between the maximum 53.41mm and the minimum 2.50mm. To prevented future natural disaster, long term water planning and management is requied in consideration El $Nin\tilde{o}$.

Gametogenic Cycle and the Number of Spawning Seasons by Quantitative Reproductive Analysis in Female Ruditapes philippinarum in Western Korea

  • Chung, Ee-Yung;Lee, Chang-Hoon;Choi, Ki-Ho;Choi, Moon-Sul;Lee, Ki-Young
    • The Korean Journal of Malacology
    • /
    • v.26 no.3
    • /
    • pp.245-254
    • /
    • 2010
  • For the studies of germ cell development and maturation in the ovary, the gametogenic cycle and the number of spawning seasons per year in female Ruditapes philippinarum were investigated by quantitative statistical analysis using an Image Analyzer System. Compared with the results by qualitative and quantitative analyses, monthly variations in female gonad indice by qualitative histological analysis showed a pattern similar to that of the female gametogenic cycle calculated by quantitative statistical analysis. The number of spawning seasons occurred once per year, from June to October. In quantitative statistical analysis using an image analyzer system, monthly changes in the portions (%) of the ovary area to total tissue areas in females increased in March and reached a maximum in May, and then showed a rapid decrease from June to October when spawning occurred. And also monthly changes in portions (%) of follicle areas to the ovary area and in portions of oocyte areas to ovarian tissue areas in females began to increase in March and reached a maximum in May, and then. rapidly dropped from June to October when spawnig occurred. From these data, it is apparent that the number of spawning seasons occurred once per year, from June to October. Monthly changes in the number of the oocyte per $mm^2$ and in mean diameter of the oocyte in captured image which were calculated for each female slide showed a maximum in May and reached the minimum from December to February. Therefore, female R. philippinarum showed a unimodal gametogenic cycle during the year.

Kriging Analysis for Spatio-temporal Variations of Ground Level Ozone Concentration

  • Gorai, Amit Kumar;Jain, Kumar Gourav;Shaw, Neha;Tuluri, Francis;Tchounwou, Paul B.
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2015
  • Exposure of high concentration of ground-level ozone (GLO) can trigger a variety of health problems including chest pain, coughing, throat irritation, asthma, bronchitis and congestion. There are substantial human and animal toxicological data that support health effects associated with exposure to ozone and associations have been observed with a wide range of outcomes in epidemiological studies. The aim of the present study is to estimate the spatial distributions of GLO using geostatistical method (ordinary kriging) for assessing the exposure level of ozone in the eastern part of Texas, U.S.A. GLO data were obtained from 63 U.S. EPA's monitoring stations distributed in the region of study during the period January, 2012 to December, 2012. The descriptive statistics indicate that the spatial monthly mean of daily maximum 8 hour ozone concentrations ranged from 30.33 ppb (in January) to 48.05 (in June). The monthly mean of daily maximum 8 hour ozone concentrations was relatively low during the winter months (December, January, and February) and the higher values observed during the summer months (April, May, and June). The higher level of spatial variations observed in the months of July (Standard Deviation: 10.33) and August (Standard Deviation: 10.02). This indicates the existence of regional variations in climatic conditions in the study area. The range of the semivariogram models varied from 0.372 (in November) to 15.59 (in April). The value of the range represents the spatial patterns of ozone concentrations. Kriging maps revealed that the spatial patterns of ozone concentration were not uniform in each month. This may be due to uneven fluctuation in the local climatic conditions from one region to another. Thus, the formation and dispersion processes of ozone also change unevenly from one region to another. The ozone maps clearly indicate that the concentration values found maximum in the north-east region of the study area in most of the months. Part of the coastal area also showed maximum concentrations during the months of October, November, December, and January.