• Title/Summary/Keyword: Monthly forecasting

Search Result 185, Processing Time 0.026 seconds

Forecasting the Korea's Port Container Volumes With SARIMA Model (SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측)

  • Min, Kyung-Chang;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.600-614
    • /
    • 2014
  • This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.

Forecasting of Water Quality in Chinyang Reservoir Using ARIMA Model (ARIMA 모형을 이용한 진양호 수질의 장래예측)

  • Kim, Jong-oh;Yoo, Hwan-Hee;Kim, Ok-Sun;Park, Jung-Seok
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 1999
  • The purpose of this study was to analysis water quality monitoring data and to estimate future trends using ARIMA model of time series analysis. Water quality data in Chin yang reservoir were used with monthly monitoring interval during past 7 years. The variations of water quality parameters with periodicity and trend could be estimated by multiplicative ARIMA models and the statistical tests showed a good agreement with the observed data. Therefore, the monthly values of water quality parameters could be forecasted using these models.

  • PDF

Forecasting of Stream Qualities in Gumho River by Exponential Smoothing at Gumho2 Measurement Point using Monthly Time Series Data

  • Song, Phil-Jun;Lee, Bo-Ra;Kim, Jin-Yong;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.609-617
    • /
    • 2007
  • The goal of this study is to forecast the trend of stream quality and to suggest some policy alternatives in Gumbo river. It used the five different monthly time series data such as BOD, COD, T-N and EC of the nine of Gumbo River measurement points from Jan. 1998 to Dec. 2006. Water pollution is serious at Gumbo2 and Palgeo stream measurement points. BOD, COD, T-N and EC data are analyzed with the exponential smoothing model and the trend is forecasted until Dec. 2009.

  • PDF

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Bankruptcy Risk Level Forecasting Research for Automobile Parts Manufacturing Industry (자동차부품제조업의 부도 위험 수준 예측 연구)

  • Park, Kuen-Young;Han, Hyun-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.4
    • /
    • pp.221-234
    • /
    • 2013
  • In this paper, we report bankruptcy risk level forecasting result for automobile parts manufacturing industry. With the premise that upstream supply risk and downstream demand risk could impact on automobile parts industry bankruptcy level in advance, we draw upon industry input-output table to use the economic indicators which could reflect the extent of supply and demand risk of the automobile parts industry. To verify the validity of each economic indicator, we applied simple linear regression for each indicators by varying the time lag from one month (t-1) to 12 months (t-12). Finally, with the valid indicators obtained through the simple regressions, the composition of valid economic indicators are derived using stepwise linear regression. Using the monthly automobile parts industry bankruptcy frequency data accumulated during the 5 years, R-square values of the stepwise linear regression results are 68.7%, 91.5%, 85.3% for the 3, 6, 9 months time lag cases each respectively. The computational testing results verifies the effectiveness of our approach in forecasting bankruptcy risk forecasting of the automobile parts industry.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요예측)

  • Kim, Ki-Su;Ryu, Gu-Hyun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1695-1699
    • /
    • 2009
  • This paper analyzed the characteristics of the demand of electric power in Jeju by year, day. For this analysis, this research used the correlation between the changes in the temperature and the demand of electric power in summer, and cleaned the data of the characteristics of the temperatures, using the coefficient of correlation as the standard. And it proposed the algorithm of forecasting the short-term electric power demand in Jeju, Therefore, in the case of summer, the data by each cleaned temperature section were used. Based on the data, this paper forecasted the short-term electric power demand in the exponential smoothing method. Through the forecast of the electric power demand, this paper verified the excellence of the proposed technique by comparing with the monthly report of Jeju power system operation result made by Korea Power Exchange-Jeju.

A Study the load Forecasting Techniques using load Composition Rates (Residential load) (부하구성비를 이용한 부하예측에 관한 연구 - 주거용 부하를 중심으로 한)

  • Park, Jun-Yioul;Lim, Jae-Yun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.82-85
    • /
    • 1993
  • The load forecasting has been essential in planning and operation of power systems. The load composition rata is also needed to analyze power-systems - load flow calculation and system stability. This paper proposes the monthly peak load forecasting methods for load groups in residential class using load composition rate and electric consumption characteristics. The proposed methods were applied to a real-scale power system and the effectiveness was turned out.

  • PDF