• 제목/요약/키워드: Monthly forecasting

Search Result 185, Processing Time 0.024 seconds

Using noise filtering and sufficient dimension reduction method on unstructured economic data (노이즈 필터링과 충분차원축소를 이용한 비정형 경제 데이터 활용에 대한 연구)

  • Jae Keun Yoo;Yujin Park;Beomseok Seo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.119-138
    • /
    • 2024
  • Text indicators are increasingly valuable in economic forecasting, but are often hindered by noise and high dimensionality. This study aims to explore post-processing techniques, specifically noise filtering and dimensionality reduction, to normalize text indicators and enhance their utility through empirical analysis. Predictive target variables for the empirical analysis include monthly leading index cyclical variations, BSI (business survey index) All industry sales performance, BSI All industry sales outlook, as well as quarterly real GDP SA (seasonally adjusted) growth rate and real GDP YoY (year-on-year) growth rate. This study explores the Hodrick and Prescott filter, which is widely used in econometrics for noise filtering, and employs sufficient dimension reduction, a nonparametric dimensionality reduction methodology, in conjunction with unstructured text data. The analysis results reveal that noise filtering of text indicators significantly improves predictive accuracy for both monthly and quarterly variables, particularly when the dataset is large. Moreover, this study demonstrated that applying dimensionality reduction further enhances predictive performance. These findings imply that post-processing techniques, such as noise filtering and dimensionality reduction, are crucial for enhancing the utility of text indicators and can contribute to improving the accuracy of economic forecasts.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

Forecasting Export & Import Container Cargoes using a Decision Tree Analysis (의사결정나무분석을 이용한 컨테이너 수출입 물동량 예측)

  • Son, Yongjung;Kim, Hyunduk
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.4
    • /
    • pp.193-207
    • /
    • 2012
  • The of purpose of this study is to predict export and import container volumes using a Decision Tree analysis. Factors which can influence the volume of container cargo are selected as independent variables; producer price index, consumer price index, index of export volume, index of import volume, index of industrial production, and exchange rate(won/dollar). The period of analysis is from january 2002 to December 2011 and monthly data are used. In this study, CRT(Classification and Regression Trees) algorithm is used. The main findings are summarized as followings. First, when index of export volume is larger than 152.35, monthly export volume is predicted with 858,19TEU. However, when index of export volume is between 115.90 and 152.35, monthly export volume is predicted with 716,582TEU. Second, when index of import volume is larger than 134.60, monthly import volume is predicted with 869,227TEU. However, when index of export volume is between 116.20 and 134.60, monthly import volume is predicted with 738,724TEU.

A Study on the Estimation of Electricity Demand for Heating and Cooling using Cross Temperature Response Function (교차기온반응함수로 추정한 전력수요의 냉난방 수요 변화 추정)

  • Park, Sung Keun;Hong, Soon Dong
    • Environmental and Resource Economics Review
    • /
    • v.27 no.2
    • /
    • pp.287-313
    • /
    • 2018
  • This paper measures and analyzes cooling and heating demand in Korean electricity demand using time-varying temperature response functions and cooling and heating temperature effects. We fit the model to Korean data for residential and commercial sector over 1999:01~2016:12 and the estimation results show that the growth rate of heating demand is much higher than that of base and cooling demand, and especially the growth rate of heating demand in commercial sector is much higher. And we define the temperature-normalized demand conditioning that monthly temperatures are assumed as average monthly temperatures. The growth rate of heating demand in the estimated temperature-normalized demand is higher than that in the real demand. Our results are expected to be a base data for Winter Demand Management and short-term electricity demand forecasting.

Development of groundwater level monitoring and forecasting technique for drought analysis (I) - Groundwater drought monitoring using standardized groundwater level index (SGI) (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(I) - 표준지하수지수(SGI)를 이용한 지하수 가뭄 모니터링)

  • Lee, Jeongju;Kang, Shinuk;Jeong, Jihye;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1011-1020
    • /
    • 2018
  • This study aims to develop a drought monitoring scheme based on groundwater which can be exploit for water supply under drought stress. In this context, groundwater level can be used as a proxy for better understanding the temporal evolution of drought state. First, kernel density estimator is presented in the monthly groundwater level over the entire national groundwater stations. The estimated cumulative distribution function is then utilized to map the monthly groundwater level into the standardized groundwater level index (SGI). The SGI for each station was eventually converted into the index for major cities through the Thiessen polygon approach. We provide a drought classification for a given SGI to better characterize the degree of drought condition. Ultimately, we conclude that the proposed monitoring framework enables a more reliable estimation of the drought stress, especially for a limited water supply area.

Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin (기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석)

  • Shon, Tae Seok;Lee, Kyu Yeol;Im, Tae Hyo;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

The Impact of Building Types on Fire Damage by Month

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • Statistics show that while the number of fires has decreased over the last decade, losses of human life and economic property due to fire have increased. Moreover, the number of large-scale fires that have occurred in recent years has resulted in heightened public anxiety. This study aims to identify a specific period of the year most vulnerable to fire, and fire trends, such as damage of fire to humans, to the economy, and different building types. For this purpose, we analyzed human and economic damages using statistics related to fire from 2007 to 2017 and provided a monthly distribution of fire damages both to humans and to the economy by building type. We also identified the relationship between the human damage and the economy damage, and compared the economic losses per casualty by building type. The human damage in residential buildings occupied the highest portion, whereas the economic damage of industrial buildings represented more than a half of all economic damage due to fire. The economic damage per casualty was shown highest for industrial buildings and has also increased rapidly in recent years.

Forecasting Monthly Inflow for the Storage Management of Small Dams (저수관리를 위한 댐의 월유입량 예측)

  • Jee, Yong-Geun;Kim, Sun-Joo;Kim, Phil-Shik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.85-89
    • /
    • 2005
  • 도시발달과 인구증가로 인해 오늘날의 수자원 관리와 계획은 복잡하고 그 중요성은 더욱더 커지고 있으며, 인구와 재산의 집중현상으로 인하여 사소한 수문재해로 인해 막대한 인명과 재산피해를 초래될 수 있다. 이런 이유들로 인해 정확한 수문예측과 이를 통한 적절한 수자원 관리는 그 어느 때보다 중요한 인자로 인식되고 있다. 본 연구에서는 수문예측을 통한 소규모 댐으로의 정확한 월유입량 예측을 실시하여 실측유입량과 비교$\cdot$분석함으로서 수자원관리의 효율성을 향상시키고자 하였다. 수문예측을 위해서 확률론적 예측이 가능한 앙상블 예측기법(Ensemble Prediction Method)을 적용하였으며 과거 1968-1997년까지의 강우데이터와 수정 TANK모형을 이용하여 1998부터 2002년까지의 성주댐의 월유입량 앙상블을 생성하였다. 수문예측뿐만 아니라 유입량예측의 정확성을 향상시키기 위해 수정 TANK모형의 매개변수를 최적화기법 중의 하나인 유전자알고리즘을 이용하여 매개변수를 최적화하였으며 평창강유역과 보청천유역의 실측데이터를 이용하여 모형의 검증을 실시하였다. 또한 강우발생시 과소하게 유출량이 산정되는 것을 보완하기 위해 매개변수를 평수기와 홍수기의 구분하여 모형을 적용하였다. 본 연구에서 제시된 앙상블 예측기법과 최적화된 수정 TANK모형을 이용하여 댐의 수자원을 관리한다면 효율적인 관리가 이루어 질 것으로 판단된다.

  • PDF