Abstract
The of purpose of this study is to predict export and import container volumes using a Decision Tree analysis. Factors which can influence the volume of container cargo are selected as independent variables; producer price index, consumer price index, index of export volume, index of import volume, index of industrial production, and exchange rate(won/dollar). The period of analysis is from january 2002 to December 2011 and monthly data are used. In this study, CRT(Classification and Regression Trees) algorithm is used. The main findings are summarized as followings. First, when index of export volume is larger than 152.35, monthly export volume is predicted with 858,19TEU. However, when index of export volume is between 115.90 and 152.35, monthly export volume is predicted with 716,582TEU. Second, when index of import volume is larger than 134.60, monthly import volume is predicted with 869,227TEU. However, when index of export volume is between 116.20 and 134.60, monthly import volume is predicted with 738,724TEU.
본 연구는 의사결정나무분석을 이용하여 컨테이너 수출입 물동량을 예측한다. 컨테이너 수출입 물동량에 영향을 미칠 가능성이 있는 요인을 독립변수로 선정하였는데, 생산자물가지수와 소비자물가지수, 수출물량지수와 수입물량지수, 미국과 한국의 산업생산지수, 그리고 원/달러 환율을 선정하였다. 분석기간은 2002년 1월부터 2011년 12월까지 10년간의 월별자료를 이용하였으며, 의사결정나무를 형성하기 위해 다양한 알고리즘이 제안되고 있는데, CRT(Classification and Regression Trees)알고리즘을 활용하였다. 분석결과는 첫째, 컨테이너 수출물동량에 대한 최적분리는 수출물량지수에 의해 분리되었다. 수출물량지수는 115.90으로 분리되어 지는데, 수출물량지수가 115.90보다 큰 경우는 다시 수출물량지수가 152.35보다 큰 경우와 115.90과 152.35사이인 경우로 분리되어진다. 여기서 수출물량지수가 152.35보다 큰 경우는 858,191TEU/(월)이고, 115.90과 152.35사이인 경우는 716,582TEU/(월)로 컨테이너 수출물동량이 예측된다. 둘째, 컨테이너 수입 물동량에 대한 최적분리는 수입물량지수에 의해 분리되었다. 수입물량지수가 116.20에서 분리되어 지는데, 수입물량지수가 116.20보다 큰 경우는 다시 수입물량지수가 134.60보다 큰 경우와 116.20과 134.60사이인 경우로 분리되어진다. 여기서 수입물량지수가 134.60보다 큰 경우는 869,227TEU/(월)이고, 116.20과 134.60사이인 경우는 738,724TEU/(월)로 컨테이너 수입물동량이 예측된다.