• 제목/요약/키워드: Monthly forecasting

검색결과 184건 처리시간 0.024초

Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측 (Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model)

  • 양문희;임상규
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

ARIMA 모형에 의한 하천수질 예측

  • 류병로;한양수
    • 한국환경과학회지
    • /
    • 제7권4호
    • /
    • pp.433-440
    • /
    • 1998
  • This study was carried out to develop the stream water quality model for the intaking station of Kongju waterworks in the Keum River system. The monthly water quality(total nitrogen and total phosphorus) with periodicity and trend were forecasted by multiplicative ARIU models and then the applicability of the models was tested based on 7 years of the historical monthly water quality data at Kongju intaking strate. The parameter estimation was made with the monthly observed data. The last one year data was used to compare the forecasted water Quality by ARU model with the observed one. The models are ARIMA(2,0,0)$\times$(0,1,1)l2 for total nitrogen, ARIMA(0,1,1)x(0,1,1)l2 for total phosphorus. The forecasting results showed a good agreement with the observed data. It is implying the applicability of multiplicative ARIMA model for forecasting monthly water quality at the Kongju site.

  • PDF

시스템 시뮬레이션을 통한 원자재 가격 및 운송 운임 모델 (A System Dynamics Model for Basic Material Price and Fare Analysis and Forecasting)

  • 정재헌
    • 한국시스템다이내믹스연구
    • /
    • 제10권1호
    • /
    • pp.61-76
    • /
    • 2009
  • We try to use system dynamics to forecast the demand/supply and price, also transportation fare for iron ore. Iron ore is very important mineral resource for industrial production. The structure for this system dynamics shows non-linear pattern and we anticipated the system dynamic method will catch this non-linear reality better than the regression analysis. Our model is calibrated and tested for the past 6 year monthly data (2003-2008) and used for next 6 year monthly data(2008-2013) forecasting. The test results show that our system dynamics approach fits the real data with higher accuracy than the regression one. And we have run the simulations for scenarios made by possible future changes in demand or supply and fare related variables. This simulations imply some meaningful price and fare change patterns.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

Forecasting Total Marine Production through Multiple Time Series Model

  • Cho, Yong-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.63-76
    • /
    • 2006
  • Marine production forecasting in fisheries is a crucial factor for managing and maintaining fishery resources. Thus this paper aims to generate a forecasting model of total marine production. The most generally method of time series model is to generate the most optimal single forecasting model. But the method could induce a different forecasting results when it does not properly infer a model To overcome the defect, I am trying to propose a single forecasting through multiple time series model. In other word, by comparing and integrating the output resulted from ARIMA and VAR model (which are typical method in a forecasting methodology), I tried to draw a forecasting. It is expected to produce more stable and delicate forecasting prospect than a single model. Through this, I generated 3 models on a yearly and monthly data basis and then here I present a forecasting from 2006 to 2010 through comparing and integrating 3 models. In conclusion, marine production is expected to show a decreasing tendency for the coming years.

  • PDF

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

AREA 활용 전력수요 단기 예측 (Short-term Forecasting of Power Demand based on AREA)

  • 권세혁;오현승
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • 제12권3호
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

기상예보정보를 활용한 월 댐유입량 예측 (Monthly Dam Inflow Forecasts by Using Weather Forecasting Information)

  • 정대명;배덕효
    • 한국수자원학회논문집
    • /
    • 제37권6호
    • /
    • pp.449-460
    • /
    • 2004
  • 본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 정성적인 기상예보정보를 정량화 시키는 방법을 제안하였다. AMFIS를 이용하여 월 댐유입량 예측 시, 관측자료만으로 구성된 모형에 의한 예측결과와 관측자료에 기상예보정보를 더하여 구성된 모형에 의한 예측결과를 비교하였다. 그 결과 ANFIS는 기상예보정보를 활용하여 댐유입량을 예측했을 때가 관측자료만으로 예측했을 때보다 예측능력이 더욱 정확함을 보였다.

Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측 (Stochastic Forecasting of Monthly River Flwos by Multiplicative ARIMA Model)

  • 박무종;윤용남
    • 물과 미래
    • /
    • 제22권3호
    • /
    • pp.331-339
    • /
    • 1989
  • 추계학적 모형 중의 하나인 Multiplicative ARIMA 모형을 사용하여 주기성과 경향성을 가지는 월유량계열을 예측하였으며 그 모형의 적합성은 낙동강 유역의 진동 수위 관측 지점에서의 23년간의 월 유량자료를 사용하여 검정하였다. 최종적으로 산정된 ARIMA (2,0,0)$\times$$(0,1,1)_{12}$ 모형의 변수는 21년간의 자료를 사용하여 산정하였으며 나머지 2년간의 월 유량자료는 예측치와 관측치를 비교하는데 사용하였다. 본 모형에 의한 에측치와 관측치의 비교결과 Multiplicative ARIMA 모형은 진동지점의 월유량 계열의 예측에 적합함이 판명되었다.

  • PDF