• Title/Summary/Keyword: Monthly Weather Table

Search Result 7, Processing Time 0.02 seconds

Recalculation of Monthly Weather Table for Construction Standard Cost Estimating on Aerial Photogrammetry (항공사진측량 품셈 개정을 위한 월별천후표 재계산)

  • Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.571-577
    • /
    • 2019
  • Since the introduction of digital cameras in an aerial-photogrammetry field on 2006, the technological paradigm related to the photogrammetry has been shifting from the analog types to digital types. However, current construction standard cost for the aerial-photogrammetry and the digital mapping are being mixed with analog-based concepts and digital-based methods. In the current standard cost, the monthly weather table is closely related to the calculation of the number of flying days in a taking of aerial photograph. The current monthly weather table uses the results calculated from the observation data of total cloud amount from 1999 to 2007. In this study, the monthly weather table was calculated using the total cloud data during ten years from 2009 to 2018. As a result, the newly calculated number of clear days for 29 stations was analyzed as 44 days decreased by 6 days. The maximum number of clear days decreased in Jinju as 23 days, and the highest decreased clearing days was February.

A Study of Historical Seasonal Subdivision System and Modern Definitional Issue of Meteorological Seasons (전통시대 절후법과 기후표 고찰에 따른 현대 '기상계절'과 '새로운 기후표'의 제안)

  • Kim, Il-Gwon
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.185-192
    • /
    • 2016
  • In this paper, I studied about historical seasonal subdivision system and a theory of traditional monthly order, which was used for so long from Koryo dynasty to the late of Choseon dynasty in Korean histoy. Especially, I took note of the fact that there used the table of solar terms and meteorological observation what we called the table of Kihoo-pyo in the historical Sunmyung-calendar and the Soosi-calendar during the Koryo dynasty. This table of Kihoo was developed for explaining meteorological change during a year at that time. Here are largely four elements related meteorological nature : the first is the list of 24 solar terms, and the second is 12 monthly seasonal terms and 12 monthly central terms, the third is about four right hexagon based I-ching, the fourth is 72 meteorological observations called 72-hoo. Among them, the 72-hoo system is important to know how premodern people observed natural materials including animals and plants, weather, climate about meteorological phenomena according to the seasonal change or solar terms' change during a year. I argued in this article to need developing modern new table of Kihoo system like that, in order to show common people to recognize annual meteorological change more easy and clear. I also argued to need a distinct definition of meteorological seasons from a view point of modern meteorology.

Wether Conditions for Aerial Photography (항공사진촬영을 위한 국내 기상자료 분석)

  • 조우석;이성훈;최승식;황현덕;이하준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.313-318
    • /
    • 2004
  • The quality of aerial photograph is closely connected with the change of wether conditions like as cloud cover, visibility, drifted snow and so on. To solve some problems caused by wether condition, the related organizations in advanced nations have presented some standards of wether condition for aerial photography. In domestic case, the NGI has presented some standards based on the internal specification of aerial photography and the table of monthly weather condition, but it is not enough to make the quantitative and objective standards on aerial photography specification. In this paper, we proposed a method which can reflect domestic weather condition and make accurate estimation of the average number of clear days in one year for aerial photography.

  • PDF

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Effects of Local Climatic Conditions on the Early Growth in Korean White Pine (Pinus koraiensis Sieb. et Zucc.) Stands -Relation between Annual Increment and Local Climatic Conditions- (지역별 잣나무 초기생장에 미치는 미기후의 영향 - 연년생장과 미기후와의 관계-)

  • Chon Sang- Keun;Shin Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 1999
  • This study was conducted to investigate the effects of local climatic conditions on the annual increment of Korean white pine planted in Gapyung and Yaungdong. For this, stand variables such as mean DBH, mean height, basal area per hectare, and volume per hectare by stand age were measured and summarized for each locality. Based on these statistics, annual increments for 8 years from stand age 10 to 18 were calculated for each of stand variables. A topoclimatological technique which makes use of empirical relationships between the topography and the weather in study sites was applied to produce normal estimates of monthly mean, maximum, minimum temperatures, relative humidity, precipitation, and hours of sunshine. Then, the yearly climatic variables from 1990 to 1997 for each study site were derived from the spatial interpolation procedures based on inverse- distance weighting of the observed deviation from the climatic normals at the nearest 11 standard weather stations. From these estimates, 17 weather variables such as warmth index, coldness index, index of aridity etc., which affect the tree growth, were computed on yearly base for each locality. The deviations of measured annual increments from the expected annual increments for 8 years based on yield table of Korean white pine were then correlated with and regressed on the yearly weather variables to examine effects of local climatic conditions on the growth. Gapyung area provides better conditions for the growth of Korean white pine in the early stage than Youngdong area. This indicates that the conditions such as low temperature, high relative humidity, and large amount of precipitation provide favor environment for the early growth of Korean white pine. A ccording to the correlation and regression an analysis using local climatic conditions and annual increments, the growth pattern of Gapyung area corresponds to this tendency. However, it was found that the relationship between annual increments and local climatic conditions in Youngdong area shows different tendency from Gapyung. These results mean that the yearly growth pattern could not sufficiently be explained by climatic conditions with high variance in yearly weather variables. In addition, the poor growth in Youngdong area might not only be affected by climatic conditions, but also by other environmental factors such as site quality.

  • PDF

A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool. (온수지에 의한 관개용수의 수온상승 효과에 관한 연구)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF