• Title/Summary/Keyword: Monte Carlo simulation

Search Result 2,860, Processing Time 0.041 seconds

Dynamic percolation grid Monte Carlo simulation

  • Altmann Nara;Halley Peter J.;Nicholson Timothy M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.7-16
    • /
    • 2007
  • A dynamic Monte Carlo percolation grid simulation is used to predict the cure behaviour of thermoset materials. Molecules are distributed in a fixed grid and a probability of reaction is assigned to each pair of neighbouring units considering both reaction rates and diffusion. The concentration and network characteristics are predicted throughout the whole curing process and compared to experimental data for an epoxy-amine matrix.

Shapriro-Francia W' Statistic Using Exclusive Monte Carlo Simulation

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.139-155
    • /
    • 2000
  • An exclusive simulation study is conducted in computing means for order statistics in standard normal variate. Monte Carlo moments are used in Shapiro-Francia W' statistic computation. Finally, quantiles for Shapiro-Francia W' are generated. The study shows that in computing means for order statistics in standard normal variate, complicated distributions and intensive numerical integrations can be avoided by using Monte Carlo simulation. Lack of accuracy is minimal and computation simplicity is noteworthy.

  • PDF

Random Vibration of Non-linear System with Multiple Degrees of Freedom (다자유도 비선형계의 불규칙 진동 해석)

  • Lee, Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.21-28
    • /
    • 2006
  • Vibration of a non-linear system with multiple degrees of freedom under random parametric excitations was evaluated by probabilistic method. The non-linear characteristic terms of system structure were quasi-linearized and excitation terms were remained as they were. An analytical method where the expectation values of square mean of error was minimized was used. The numerical results were compared with those obtained by Monte Carlo simulation. A linear congruential generator and Box-Muller method were used in Monte Carlo simulation. The comparison showed the results by probabilistic method agreed well with those by Monte Carlo simulation.

Monte Carlo Simulation of the Electron transport coefficients using Electron collision cross sections for $SP_{6}$ Gas ($SP_{6}$ 가스의 전자충돌단면적을 이용한 전자수송계수에 대한 몬테칼로 시뮬레이션)

  • 서상현;전병훈;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.152-157
    • /
    • 1995
  • The electron transport coefficients in $SP_{6}$ gas is calculated and analysed for range of E/N values from 150∼800(Td) by a Monte Carlo simulation, using a set of electron collision cross sections determined by the authors. The result of the Monte Carlo simulation such as electron drift velocity, ionization and electron attachment coefficients, longitudinal and transverse diffusion coefficients in neatly agreement with the respective experimental and theoretical for a range of E/N. The validity of the results obtained has been confirmed by a Monte Carlo simulation carried out parallel to the analysis.

  • PDF

Design of Plasma Cutting Torch by Tolerance Propagation Analysis (공차누적해석을 이용한 플라즈마 절단토치의 설계에 관한 연구)

  • 방용우;장희석;장희석;양진승
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2000
  • Due to the inherent dimensional uncertainty, the tolerances accumulate in the assembly of plasma cutting torch. Tolerance accumulation has serious effect on the performance of the plasma torch. This study proposes a statistical tolerance propagation model, which is based on matrix transform. This model can predict the final tolerance distributions of the completed plasma torch assembly with the prescribed statistical tolerance distribution of each part to be assembled. Verification of the proposed model was performed by making use of Monte Carlo simulation. Monte Carlo simulation generates a large number of discrete plasma torch assembly instances and randomly selects a point within the tolerance region with the prescribed statistical distribution. Monte Carlo simulation results show good agreement with that of the proposed model. This results are promising in that we can predict the final tolerance distributions in advance before assembly process of plasma torch thus provide great benefit at the assembly design stage of plasma torch.

  • PDF

Power Wheeling Effects Evaluation using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 전력탁송 영향평가)

  • Lee, Buhm
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.552-557
    • /
    • 2003
  • This paper presents an algorithm for evaluating power wheeling effects considering contingency using Monte-Carlo simulation. The effects of power wheeling on generating cost, transmission losses, and system security are considered. And, for a specific operating condition, the effects are quantified by the sensitivity of specific quantities of interest with respect to wheeling level. This model is utilized to calculate probability distribution functions of the incremental effects of power wheeling with a Monte-Carlo simulation. The proposed method is applied to IEEE RTS-96 system and the results are presented.

A Study on Algorism for Evaluating Power Wheeling Effects using Monte-Carlo Simulation (Monte Carlo Simulation을 이용한 Power Wheeling 영향평가 알고리즘에 관한 연구)

  • Cho, Jae-Han;Nam, Kwang-Woo;Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1111-1113
    • /
    • 1999
  • This paper presents a algorism for evaluating contingency case power wheeling effects using Monte-Carlo simulation The effects of wheeling on generating cost, transmission losses, and system security are considered. For a specific operating condition, the effects are quantified by the sensitivity of specific quantities of interest with respect to wheeling level. This model is utilized within a Monte-Carlo simulation to calculate probability distribution functions of the incremental effects of wheeling on operating cost, transmission losses, and system security. The model and solution methods are applied on a IEEE RTS-96 system power system and the results are presented.

  • PDF

IMPROVED POD METHODOLOGY USING MONTE CARLO SIMULATION

  • Park, Ik-Keun;Yoon, Jong-Hak;Ro, Sing-Nam;Seo, Seong-Won;Namkoong, Chai-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.73-78
    • /
    • 2003
  • Ultrasonic measurement is one of important technologies in the lift-time maintenance of nuclear poler plant. Ultrasonic inspection system is consisted of the operator, equipment and procedure. The reliability of ultrasonic inspection system is affected by its ability. The performance demonstration round robin was conducted to quantify the capability of ultrasonic inspection for in-service. The small number of teams who employed procedures that met or exceeded ASME Sec. XI Code requirements detected the piping of nuclear power plant with various cracks to evaluate the capability of detection and sizing. In this paper, the statistical reliability assessment of ultrasonic nondestructive inspection data using Monte Carlo simulation is presented. The results of the probability of detection (POD) analysis using Monte Carlo simulation are compared to these of logistic probability model. In these results, Monte Carlo simulation was found to be very useful to the reliability assessment f3r the small hit/miss data sets.

  • PDF

Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method (비선형 불규칙 진동 보의 등가에너지법에 의한 선형화)

  • Lee, Sin-Young;Cai, G.Q.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

Generation of a adaptive tetrahedral refinement mesh for GaAs full band monte carlo simulation (풀밴드 GaAs monte carlo 시뮬레이션을 위한 최적사면체격자의 발생)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.37-44
    • /
    • 1997
  • A dadaptive refinement tetrahedron mesh has been presented for using in full band GaAs monte carlo simulation. A uniform tetrahedron mesh is used without regard to energy values and energy variety in case of the past full band simulation. For the uniform tetrahedron mesh, a fine tetrahedron is demanded for keeping up accuracy of calculation in the low energy region such as .GAMMA.-valley, but calculation time is vast due to usin gthe same tetrahedron in the high energy region. The mesh of this study, thererfore, is consisted of the fine mesh in the low energy and large variable energy region and rough mesh n the high energy. The density of states (DOS) calculated with this mesh is compared with the one of the uniform mesh. The DOS of this mesh is improved th efive times or so in root mean square error and the ten times in the correlation coefficient than the one of a uniform mesh. This refinement mesh, therefore, can be used a sthe basic mesh for the full band GaAs monte carlo simulation.

  • PDF