As the demand for high-quality rendering for mixed reality, videogame, and simulation has increased, global illumination has been actively researched. Monte Carlo path tracing can realize global illumination and produce photorealistic scenes that include critical effects such as color bleeding, caustics, multiple light, and shadows. If the sampling rate is insufficient, however, the rendered results have a large amount of noise. The most successful approach to eliminating or reducing Monte Carlo noise uses a feature-based filter. It exploits the scene characteristics such as a position within a world coordinate and a shading normal. In general, the techniques are based on the denoised pixel or sample and are computationally expensive. However, the main challenge for all of them is to find the appropriate weights for every feature while preserving the details of the scene. In this paper, we compare the recent algorithms for removing Monte Carlo noise in terms of their performance and quality. We also describe their advantages and disadvantages. As far as we know, this study is the first in the world to compare the artificial intelligence-based denoising methods for Monte Carlo rendering.
In this paper, we designed a revised neural network to remove the Monte Carlo Rendering noise contained in the ray tracing graphics. The Monte Carlo Rendering is the best way to enhance the graphic's realism, but because of the need to calculate more than thousands of light effects per pixel, rendering processing time has increased rapidly, causing a major problem with real-time processing. To improve this problem, the number of light used in pixels is reduced, where rendering noise occurs and various studies have been conducted to eliminate this noise. In this paper, a deep learning is used to remove rendering noise, especially by separating the rendering image into diffuse and specular light, so that the structure of the dual neural network is designed. As a result, the dual neural network improved by an average of 0.58 db for 64 test images based on PSNR, and 99.22% less light compared to reference image, enabling real-time race-tracing rendering.
Improving over a previous study [1], this paper provides a Monte Carlo method for the heat conduction analysis of problems with complicated geometry (such as a pebble with dispersed fuel particles). The method is based on the theoretical results of asymptotic analysis of neutron transport equation. The improved method uses an appropriate boundary layer correction (with extrapolation thickness) and a scaling factor, rendering the problem more diffusive and thus obtaining a heat conduction solution. Monte Carlo results are obtained for the randomly distributed fuel particles of a pebble, providing realistic temperature distributions (showing the kernel and graphite-matrix temperatures distinctly). The volumetric analytic solution commonly used in the literature is shown to predict lower temperatures than those of the Monte Carlo results provided in this paper.
Shriwise, Patrick C.;Davis, Andrew;Jacobson, Lucas J.;Wilson, Paul P.H.
Nuclear Engineering and Technology
/
v.49
no.6
/
pp.1189-1198
/
2017
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.1
/
pp.381-394
/
2016
The several noise level estimation algorithms that have been developed for use in image processing and computer graphics generally exhibit good performance. However, there are certain special types of noisy images that such algorithms are not suitable for. It is particularly still a challenge to use the algorithms to estimate the noise levels of complex textured photographic images because of the inhomogeneity of the original scenes. Similarly, it is difficult to apply most conventional noise level estimation algorithms to images rendered by the Monte Carlo (MC) method owing to the spatial variation of the noise in such images. This paper proposes a novel noise level estimation method based on histogram modification, and which can be used for more accurate estimation of the noise levels in both complex textured images and MC-rendered images. The proposed method has good performance, is simple to implement, and can be efficiently used in various image-based and graphic applications ranging from smartphone camera noise removal to game background rendition.
Monte Carlo ray tracing has been widely used for simulating a diverse set of photo-realistic effects. However, this technique typically produces noise when insufficient numbers of samples are used. As the number of samples allocated per pixel is increased, the rendered images converge. However, this approach of generating sufficient numbers of samples, requires prohibitive rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively generating additional rays. In this paper, we proposed a Stein's Unbiased Risk Estimator (SURE) based $\grave{A}$-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on SURE, we can estimate filtering errors associated with $\grave{A}$-Trous wavelet, and identify wavelet coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original $\grave{A}$-Trous filter on various regions in the image, while maintaining a minor computational overhead. We have integrated our propsed filtering method with the recent interactive ray tracing system, Embree, and demonstrated its benefits.
In this paper, we propose a novel noiseless method of BRDF rendering on a GPU in real-time. Illumination at a surface point is formulated as an integral of BRDF producted with incident radiance over the hemi-sphere domain. The most popular method to compute the integral is the Monte Carlo method, which needs a large number of samples to achieve good image quality. But, it leads to increase of rendering time. Otherwise, a small number of sample points cause serious image noise. The main contribution of our work is a new importance sampling scheme producing a set of incoming ray samples varying continuously with respect to the eye ray. An incoming ray is importance-based sampled at different latitude angles of the eye ray, and then the ray samples are linearly connected to form a curve, called a thread. These threads give continuously moving incident rays for eye ray change, so they do not make image noise. Since even a small number of threads can achieve a plausible quality and also can be precomputed before rendering, they enable real-time BRDF rendering on the GPU.
Monte Carlo 렌더링은 모든 빛을 광원에서부터 추적하는 것 대신, 몇 개의 빛의 경로만을 추적해서 이들의 평균으로 화소값을 정해 이미지를 만드는 방법이다. 여기서 추적하는 빛이 많다면 이미지가 사실적으로 만들어질 수 있지만 연산량이 증가한다. 따라서 적은 빛의 경로를 추적하여 렌더링을 수행하여 이미지를 만들고, 노이즈를 제거해서 많은 양의 빛을 추적하여 렌더링을 한 이미지와 유사하게 만들려는 연구가 많이 진행되고 있다. 그러나 이러한 연구들은 많은 연산량을 요구하기 때문에 고성능의 기기 사양을 요구한다. 따라서 본 연구에서는 저사양의 기기에서 활용할 수 있도록 Harris corner 검출법과 median filtering을 활용한 렌더링 이미지 노이즈 제거 연구를 수행했다.
It is significant to simulate scattering of light within media for realistic image synthesis; however, this requires costly computation. This paper introduces a practical image-space approximation technique for interactive subsurface scattering. We use a general two-pass approach, which creates transmitted irradiance samples onto shadow maps and computes illumination using the shadow maps. We estimate single scattering efficiently using a method similar to common shadow mapping with adaptive deterministic sampling. A hierarchical technique is applied to evaluate multiple scattering, based on a diffusion theory. We further accelerate rendering speed by tabulating complex functions and utilizing level of detail. We demonstrate that our technique produces high-quality images of animated scenes with blurred shadow at hundreds frames per second on graphics hardware. It can be integrated into existing interactive systems easily.
Chang, Seok-Jun;Lee, Hee-Won;Ahn, Sang-Hyeon;Lee, Hogyu;Angeloni, Rodolfo;Palma, Tali;Di Mille, Francesco
Journal of The Korean Astronomical Society
/
v.51
no.1
/
pp.5-16
/
2018
We investigate the escape of $Ly{\beta}$ from emission nebulae with a significant population of excited hydrogen atoms in the level n = 2, rendering them optically thick in $H{\alpha}$. The transfer of $Ly{\beta}$ line photons in these optically thick regions is complicated by the presence of another scattering channel leading to re-emission of $H{\alpha}$, alternating their identities between $Ly{\beta}$ and $H{\alpha}$. In this work, we develop a Monte Carlo code to simulate the transfer of $Ly{\beta}$ line photons incorporating the scattering channel into $H{\alpha}$. Both $H{\alpha}$ and $Ly{\beta}$ lines are formed through diffusion in frequency space, where a line photon enters the wing regime after a fairly large number of resonance scatterings with hydrogen atoms. Various line profiles of $H{\alpha}$ and $Ly{\beta}$ emergent from our model nebulae are presented. It is argued that the electron temperature is a critical parameter which controls the flux ratio of emergent $Ly{\beta}$ and $H{\alpha}$. Specifically for $T\;=\;3{\times}10^4\;K$ and $H{\alpha}$ line center optical depth $\tau{\alpha}\;=\;10$, the number flux ratio of emergent $Ly{\beta}$ and $H{\alpha}$ is ~ 49 percent, which is quite significant. We propose that the leaking $Ly{\beta}$ can be an interesting source for the formation of $H{\alpha}$ wings observed in many symbiotic stars and active galactic nuclei. Similar broad $H{\alpha}$ wings are also expected in $Ly{\alpha}$ emitting halos found in the early universe, which can be potentially probed by the James Webb Telescope in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.