DOI QR코드

DOI QR Code

ESCAPE OF RESONANTLY SCATTERED LYβ AND Hα FROM HOT AND OPTICALLY THICK MEDIA

  • Chang, Seok-Jun (Department of Physics and Astronomy, Sejong University) ;
  • Lee, Hee-Won (Department of Physics and Astronomy, Sejong University) ;
  • Ahn, Sang-Hyeon (Korea Astronomy and Space Science Institute) ;
  • Lee, Hogyu (Korea Astronomy and Space Science Institute) ;
  • Angeloni, Rodolfo (Departamento de Fisica y Astronomia, Universidad de La Serena) ;
  • Palma, Tali (Observatorio Astronomico, Universidad Nacional de Cordoba) ;
  • Di Mille, Francesco (Las Campanas Observatory, Carnegie Observatories)
  • Received : 2017.12.03
  • Accepted : 2018.01.19
  • Published : 2018.02.28

Abstract

We investigate the escape of $Ly{\beta}$ from emission nebulae with a significant population of excited hydrogen atoms in the level n = 2, rendering them optically thick in $H{\alpha}$. The transfer of $Ly{\beta}$ line photons in these optically thick regions is complicated by the presence of another scattering channel leading to re-emission of $H{\alpha}$, alternating their identities between $Ly{\beta}$ and $H{\alpha}$. In this work, we develop a Monte Carlo code to simulate the transfer of $Ly{\beta}$ line photons incorporating the scattering channel into $H{\alpha}$. Both $H{\alpha}$ and $Ly{\beta}$ lines are formed through diffusion in frequency space, where a line photon enters the wing regime after a fairly large number of resonance scatterings with hydrogen atoms. Various line profiles of $H{\alpha}$ and $Ly{\beta}$ emergent from our model nebulae are presented. It is argued that the electron temperature is a critical parameter which controls the flux ratio of emergent $Ly{\beta}$ and $H{\alpha}$. Specifically for $T\;=\;3{\times}10^4\;K$ and $H{\alpha}$ line center optical depth $\tau{\alpha}\;=\;10$, the number flux ratio of emergent $Ly{\beta}$ and $H{\alpha}$ is ~ 49 percent, which is quite significant. We propose that the leaking $Ly{\beta}$ can be an interesting source for the formation of $H{\alpha}$ wings observed in many symbiotic stars and active galactic nuclei. Similar broad $H{\alpha}$ wings are also expected in $Ly{\alpha}$ emitting halos found in the early universe, which can be potentially probed by the James Webb Telescope in the future.

Keywords

References

  1. Adams, T. F. 1972, The Escape of Resonance-Line Radiation from Extremely Opaque Media, ApJ, 174, 439 https://doi.org/10.1086/151503
  2. Ahn, S.-H., Lee, H.-W., & Lee, H. M. 2003, P Cygni Type Ly${\alpha}$ from Starburst Galaxies, MNRAS, 340, 863 https://doi.org/10.1046/j.1365-8711.2003.06353.x
  3. Ahn, S.-H., Lee, & H.-W. 2015, Polarization of Lyman ${\alpha}$ Emergent from a Thick Slab of Neutral Hydrogen, JKAS, 48, 195
  4. Arrieta, A., & Torres-Peimbert, S. 2003, Broad H Wings in Nebulae around Evolved Stars and in Young Planetary Nebulae, ApJS, 147, 97 https://doi.org/10.1086/374922
  5. Balick, B. 1989, M2-9 - A Planetary Nebula with an Eruptive Nucleus?, AJ, 97, 476
  6. Cabot, S. H. C., Cen, R., & Zheng, Z.2016, C IV and He II Line Emission of Lyman Blobs: Powered by Shock-Heated Gas, MNRAS, 462, 1076 https://doi.org/10.1093/mnras/stw1727
  7. Chang, S.-J., Heo, J.-E., Di Mille, F., Angeloni, R., Palma, T., & Lee, H.-W. 2015, Formation of Raman Scattering Wings around H alpha, H beta, and Pa alpha in Active Galactic Nuclei, ApJ, 814, 98 https://doi.org/10.1088/0004-637X/814/2/98
  8. Dijkstra, M. 2014, Ly Emitting Galaxies as a Probe of Reionisation, PASA, 31, 40
  9. Gnat, O., & Sternberg, A. 2007, Time-Dependent Ionization in Radiatively Cooling Gas, ApJS, 168, 213 https://doi.org/10.1086/509786
  10. Gronke, M., Dijkstra, M., McCourt, M., & Oh, S. P. 2016, From Mirrors to Windows: Lyman-Alpha Radiative Transfer in a Very Clumpy Medium, ApJL, 833L, 26
  11. Godon, P., Sion, E. M., Levay, K., Linnell, A. P., & Szkody, P. 2012, An Online Catalog of Cataclysmic Variable Spectra from the Far-Ultraviolet Spectroscopic Explorer, ApJS, 203, 29G https://doi.org/10.1088/0067-0049/203/2/29
  12. Heo, J.-E., & Lee, H.-W. 2015, Accretion Flow and Disparate Profiles of Raman Scattered O VI ${\lambda}{\lambda}$1032, 1038 in the Symbiotic Star V1016 Cygni, JKAS, 48, 105
  13. Ivison, R. J., Bode, M. F., & Meaburn, J. 1994, An Atlas of High Resolution Line Profiles of Symbiotic Stars. II. Echelle Spectroscopy of Northern Sky Objects, A&AS, 103, 201
  14. Kenyon, S. 1986, The Symbiotic Stars (New York: Cambridge University Press)
  15. Laor, A., Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., & Green, R. F. 1995, The Ultraviolet Emission Properties of 13 Quasars, ApJS, 99, 1 https://doi.org/10.1086/192177
  16. Laor, A., Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., Green, R. F., & Hartig, G. F. 1994, The Ultraviolet Emission Properties of Five Low-Redshift Active Galactic Nuclei at High Signal-To-Noise Ratio and Spectral Resolution, ApJ, 420, 110 https://doi.org/10.1086/173545
  17. Lee, H.-W. 1994, On the Polarization of Resonantly Scattered Emission Lines - Part Two - Polarized Emission from Anisotropically Expanding Clouds, MNRAS, 268, 49 https://doi.org/10.1093/mnras/268.1.49
  18. Lee, H.-W. 2000, Raman-Scattering Wings of H in Symbiotic Stars, ApJL, 541, 25 https://doi.org/10.1086/309391
  19. Lee, H.-W. 2013, Asymmetric Absorption Profiles of Ly and Ly in Damped Ly Systems, ApJ, 772, 123 https://doi.org/10.1088/0004-637X/772/2/123
  20. Lee, H.-W., & Hyung, S. 2000, Broad H Wing Formation in the Planetary Nebula IC 4997, ApJL, 530, 49 https://doi.org/10.1086/312479
  21. Netzer, H. 2015, Revisiting the Unified Model of Active Galactic Nuclei, ARA&A, 53, 365 https://doi.org/10.1146/annurev-astro-082214-122302
  22. Neufeld, D. A. 1990, The Transfer of Resonance-Line Radiation in Static Astrophysical Media, ApJ, 350, 216 https://doi.org/10.1086/168375
  23. Nussbaumer, H., Schmid, H. M., & Vogel, M. 1989, Raman Scattering as a Diagnostic Possibility in Astrophysics, A&A, 211, 27
  24. Nunez, N. E., Nelson, T., Mukai, K., Sokoloski, J. L., & Luna, G. J. M. 2016, Symbiotic Stars in X-Rays. III. Suzaku Observations, ApJ, 824, 23 https://doi.org/10.3847/0004-637X/824/1/23
  25. Osterbrock, D. E. 1962, The Escape of Resonance-Line Radiation from an Optically Thick Nebula, ApJ, 135, 195 https://doi.org/10.1086/147258
  26. Ouchi, M., Shimasaku, K., Furusawa, H., Saito, T., & Yoshida, M. 2010, Statistics of 207 Ly Emitters at a Redshift Near 7: Constraints on Reionization and Galaxy Formation Models, ApJ, 723, 869 https://doi.org/10.1088/0004-637X/723/1/869
  27. Rybicki, G. B., & Lightman, A. P. 1985, Radiative Processes in Astrophysics (New York: John Wiley & Sons)
  28. Saslow W. M., & Mills D. L. 1969, Raman Scattering by Hydrogenic Systems, Phys. Rev., 187, 1025
  29. Sakurai J. J. 1967, Advanced Quantum Mechanics (Boston: Addison-Wesley)
  30. Schmid, H. 1989, Dentification of the Emission Bands at 6830, 7088A, A&A, 211, 31
  31. Schmid, H. et al. 1999, ORFEUS Spectroscopy of the O BT VI Lines in Symbiotic Stars and the Raman Scattering Process, A&A, 348, 950
  32. Schwank, M., Schmutz, W., & Nussbaumer, H. 1997, Irradiated Red Giant Atmospheres in S-Type Symbiotic Stars, A&A, 319, 166
  33. Sekeras, M., & Skopal, A. 2012, Electron Optical Depths and Temperatures of Symbiotic Nebulae from Thomson Scattering, MNRAS, 427, 979 https://doi.org/10.1111/j.1365-2966.2012.21991.x
  34. Sion, E. M., Godon, P., Mikolajewska, J., Sabra, B., & Kolobow, C. 2017, FUSE Spectroscopy of the Accreting Hot Components in Symbiotic Variables, AJ, 153, 160 https://doi.org/10.3847/1538-3881/aa62a9
  35. Skopal, A. 2005, Disentangling the Composite Continuum of Symbiotic Binaries. I. S-Type Systems, A&A, 440, 995 https://doi.org/10.1051/0004-6361:20034262
  36. Skopal, A. 2006, Broad H Wings from the Optically Thin Stellar Wind of the Hot Components in Symbiotic Binaries, A&A, 457, 1003 https://doi.org/10.1051/0004-6361:20064935
  37. van de Steene, G. C., Wood, P. R., & van Hoof, P. A. M. 2000, H Emission Line Profiles of Selected Post-AGB Stars, ASPC, 199, 191
  38. Vanden Berk, D. E., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, AJ, 122, 549 https://doi.org/10.1086/321167
  39. Van Winckel, H., Duerbeck, H. W., & Schwarz, H. E. 1993, An Atlas of High Resolution Line Profiles of Symbiotic Stars - Part One - Coud Echelle Spectrometry of Southern Objects and a Classification System of H Line Profile, A&AS, 102, 401
  40. Yang, Y., Zabludoff, A., Jahnke, K., Eisenstein, D., & Dav, R. 2011, Gas Kinematics in Ly Nebulae, ApJ, 735, 87 https://doi.org/10.1088/0004-637X/735/2/87