지하 매질의 물성 정보는 지층 구조의 정확한 영상화를 위해 필요하며, 예측된 매질 물성 자체도 지하 매질 특성에 대한 중요한 정보를 제공해줄 수 있기 때문에 다양한 종류의 지층 물성 도출 알고리듬들이 개발되고 적용되어왔다. 그 중 마르코프 연쇄 몬테 카를로를 이용한 확률론적인 접근 방법은 기존의 결정론적인 접근 방법과는 달리 지역 최소값 문제를 완화시킬 수 있으며 역산 결과의 불확실성을 정량화할 수 있다는 부분에서 장점을 가진다. 따라서 마르코프 연쇄 몬테 카를로를 이용한 지층 물성 역산 알고리듬이 다양한 지구 물리 자료의 역산에 적용되어 왔으나 그 사례는 결정론적 접근 방법에 비해 매우 적다. 본 논문에서는 여러 형태의 마르코프 연쇄 몬테 카를로 역산 알고리듬 중 가역 도약을 적용한 가역 도약 마르코프 연쇄 몬테 카를로 역산을 탄성파 자료 역산에 적용한 다양한 사례들을 소개하고 각각의 특성을 설명한다. 또한 가역 도역 마르코프 연쇄 몬테 카를로 역산의 장단점에 대해 분석하고 향후 해당 알고리듬의 연구 방향 및 국내의 활용성에 대해 논의한다.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.669-677
/
2013
본 연구에서는 다중자산 옵션 가격의 추정에 있어 자산의 수, 상관계수, 자산의 값들과 표준편차의 여러 조합에 대한 시뮬레이션을 통하여 저불일치 수열에 따르는 준난수 몬테칼로 방법들을 비교하였다. 결과적으로 준난수와 모로 역변환을 이용하는 것이 기본적인 몬테칼로 방법보다 정확하였으며 자산의 수와 관계없이 준난수 방법들 중 혼합법들이 더욱 효과적임을 알 수 있었다.
층상 반무한체에서의 확률론적 완전파형역산을 위한 Markov chain Monte Carlo (MCMC) 모사 기법을 정식화한다. Thin-layer method를 사용하여 조화 수직 하중이 작용하는 층상 반무한체의 지표면에서 추정된 동적 응답과 관측 데이터와의 차이 및 모델 변수의 사전 정보와의 차이를 최소화하도록 목적함수와 모델 변수의 사후 확률밀도함수를 정의한다. 목적함수의 기울기에 기반하여 MCMC 표본을 제안하기 위한 분포함수와 이를 수락 또는 거절할지 결정하는 수락함수를 결정한다. 기본 진동모드 뿐만이 아니라 고차 진동모드가 우세한 경우를 포함하여 다양한 층상 반무한체의 전단파 속도 추정에 제안된 MCMC 모사 기법을 적용하고 그 정확성을 검증한다. 제안된 확률론적 완전파형역산을 위한 MCMC 모사 기법은 층상 반무한체의 전단파 속도와 같은 재료 특성의 확률적 특성을 추정하는 데 적합함을 확인할 수 있다.
In this paper, a Monte Carlo-based Recursive Least Square(MC-RLS) method is presented to directly identify the inverse model of the dynamical system. Although a RLS method has been used for the identification based on the deterministic data in the closed loop controlled form, it would be better for RLS to identify the model with random data. In addition, the inverse model obtained by inverting the identified forward model may not work properly. Therefore, MC-RLS can be used for the inverse model identification without proceeding a numerical inversion of an identified forward model. The performance of the proposed method is verified through experimental studies on a control moment gyroscope.
In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.
본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.
한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
/
pp.340-343
/
2003
This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.
Genetic algorithms are so named because they are analogous to biological processes. The model parameters are coded in binary form. The algorithm then starts with a randomly chosen population of models called chromosomes. The second step is to evaluate the fitness values of these models, measured by a correlation between data and synthetic for a particular model. Then, the three genetic processes of selection, crossover, and mutation are performed upon the model in sequence. Genetic algorithms share the favorable characteristics of random Monte Carlo over local optimization methods in that they do not require linearizing assumptions nor the calculation of partial derivatives, are independent of the misfit criterion, and avoid numerical instabilities associated with matrix inversion. An additional advantage over converntional methods such as iterative least squares is that the sampling is global, rather than local, thereby reducing the tendency to become entrapped in local minima and avoiding the dependency on an assumed starting model.
Yingbo Shi;Yulin Xiang;Rongbo Su;Bitao Hu;Shaohua Sun;Zuoye Liu
Nuclear Engineering and Technology
/
제56권10호
/
pp.4134-4140
/
2024
Source term investigation is a critically important aspect of reactor decommissioning, particularly as the range of nuclides under consideration expands beyond the capabilities of existing analysis methods. In this study, we try to propose a methodology to indirectly determine the radioactivity of long-lived nuclides which are non-γ or low energy in various nuclear waste materials by measuring the radioactivity of 60Co. The critical point of this method is to establish relationship between some easy to measure (ETM) key nuclides, such as certain γ emitters (like 60Co), and the difficult to measure (DTM) nuclides to derive information for the DTM nuclides of interest. To begin, we calculate nuclide bulk densities of 55Fe, 60Co, 63Ni and 152Eu in nuclear waste materials. By constructing inversion matrices and analyzing the intensity matrices of characteristic γ lines emitted by 60Co, we can extract the radioactivity of non-γ radionuclides (55Fe, 63Ni, and 152Eu) present in the nuclear waste materials that are contained within a specific container. Furthermore, our methodology accounts for the influence of voids within the container, thereby ensuring the reliability and validity of the obtained results. This innovative approach offers a promising avenue for efficiently sorting nuclear waste.
구름에서의 다중산란 효과는 Mie 산란현상을 이용하는 탄성산란 라이다에서 그 해를 구하는데 있어서, 매우 중요한 오차요인으로 작용하기 때문에 이 효과를 보정하는 것은 그 자체만으로도 매우 중요하다. 이를 위하여 구름에서 다중산란되는 현상을 Monte Carlo 방법으로 계산하였으며, 이 결과를 적용하여 물방울 구름의 총량과 유효입자크기를 추출하는 방법을 제안하였다. 구름의 유효입자 크기가 $2.5{\mu}m$ 이하일 경우엔 355 nm나 1064 nm에서 얻은 두 파장의 소광계수로 쉽게 그 값들을 구할 수 있음을 알 수 있었다. 크기가 큰 경우엔 라이다 신호의 안정화된 선형편광도가 유효입자크기, 총량, 그리고 소광계수와 관련이 있음을 알 수 있었으며, 이 관계를 통하여 큰 입자의 경우에도 라만 라이다와 편광 라이다를 이용한다면 유효입자크기와 총량을 구할 수 있다는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.