• Title/Summary/Keyword: Monte Carlo dose calculation

Search Result 124, Processing Time 0.029 seconds

Dosimetry of Brachytherapy Sources: Review of The AAPM TG-43 Formalism

  • Cho, Sang-Hyun
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.141-143
    • /
    • 2002
  • In 1995, the American Association of Physicists in Medicine (AAPM) Task Group 43 published a report dealing with the dosimetry of interstitial brachytherapy sources, generally known as the TG-43 report. Compared to previously adopted formalisms, a formalism proposed in this report provides a more accurate and systematic brachytherapy dose calculation method, especially for Ir-192 and other low energy gamma sources such as 1-125 and Pd-l03. In this lecture, an overview of the TG-43 formalism will be presented, along with the lecturer's experience in determining the TG-43 parameters by the Monte Carlo method and experimental methods such as TLD and radiochromic film.

  • PDF

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

Radiation Streaming in KNU-1 Reactor Cavity (고리 1호기 원자로 공동에서의 방사선 흐름 현상 해석)

  • Kun-Woo Cho;Chang-Soon Kang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 1986
  • The neutron fluxes and dose rates due to radiation streaming from reactor cavities were evaluated at the KNU-1 reactor pressure vessel (RPY) head flange elevation. To find a suitable cross section data set for the evaluation, a benchmark test was performed for three data sets; DLC-23/CASK, DLC-31/FEWG, and DLC-47/BUGLE. The leakage fluxes from the KNU-1 RPV outer surface were calculated with two different methods: 1-D calculation with ANISN, and 2-D calculation with DOT3.5. The Monte Carlo procedures as embodied in the MORSE-CG code combined with the albedo option were applied to predict the radiation distributions in the cavity region. Finally, the activation analysis of the stud bolts was performed to identify the major activation products.

  • PDF

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 선형가속기 구성요소 변화에 따른 후방산란에 관한 연구)

  • Kim, Hwein;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • It should be accurate dose calculation to increase the efficiency of radiation therapy, and it is priority to figure out the beam characteristics for this purpose. The target and primary collimator in head components of the linear accelerator have the greatest influence on determining the beam characteristics which is caused by backscatter and it is the factor to consider the shielding structures and equipment management. In this study, we made modeling of the linear accelerator through the Geant4 Monte Carlo simulation and investigated backscatter according to the change of the size and shape in head components. For the scattered electrons, it showed the greatest number of distributions inside of the inner radius at primary collimator. But, for the scattered photons which have the high energy, it was mostly located outside of the inner radius at primary collimator. Scattered positrons showed a small occurrence in about 0.03%. According to the change of the inner radius at primary collimator, it was great changes in the inside of inner radius for all three scattered particles. According to the change of the outer radius at primary collimator, it was shown some considerable effects from more than 60 mm outer radius. It was no significant effect according to the change of target thickness. In this study, we found that backscatter should be considered, and figured out that geometric size and shape of the peripheral components are the factors that influences the backscatter effect.

Determination of Quality Factors for Cylindrical Ionization Chambers in kV X-rays: Review of IAEA Dosimetry Protocol and Monte Carlo Calculations and Measurements for N23333 and N30001 Chambers (kV X-선에서 원통형전리함의 선질인자 결정에 관한 연구: IAEA 프로토클 고찰과 N23333, N30001 전리함에 대한 몬테칼로 계산 및 측정)

  • Lee Kang Kyoo;Lim Chunil;Chang Sei Kyung;Moon Sun Rock;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2005
  • The quality factors for cylindrical ionization chambers for kV X-rays were determined by Monte Carlo calculation and measurement. In this study, the X-rays of 60-300 kV beam (lSO-4037) installed in KFDA and specified in energy spectra and beam qualities, and the chambers of PTW N23333 and N30001 were investigated. In calculations, the $R_{\mu}\;and\;R_{Q,Q_{0}}$ in IAEA dosimetry protocols were determined from the air kerma and the cavity dose obtained by theoretical and Monte Carlo calculations. It is shown that the N30001 chamber has a flat response of $\pm1.7\%$ in $110\~300kV$ region, while the response range of two chambers were shown to $\pm3\~4\%$ in $80\~250kV$ region. From this work we have discussed dosimetry protocol for the kV X-rays and we have found that the estimation of energy dependency is more important to apply dosimetry protocol for kV X-rays.

  • PDF

Health Risk Assessment of Disinfection By-products by Chlorination in Tap Water Ingestion (수도수중 염소 소독부산물로 인한 건강위해성 평가에 관한 연구 - 서울시 수도수중 Trihalomethanes 및 Haloaceticnitriles을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Yang, Ji-Yeon;Park, Yeon-Shin;Kim, Jun-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.31-41
    • /
    • 1997
  • Public concerns about hazardous health effect from the exposure to organic by-products of the chlorination have been increased. There are numerous studies reporting that chlorination of drinking water produces numerous chlorinated organic by-products including THMs, HAAs, HANs. Some of these products are known to be animal carcinogens. The purpose of this study was to estimate health risk of DBPs by chlorinated drinking water ingestion in Seoul based on methodologies that have been developed for conducting risk assessment of complex-chemical-mixture. The drinking water sample was collected seperately at six water treatment plant in Seoul at March, April, 1996. In tap water of households in Seoul, DBPs were measured wilfh the mean value of 36.6 $\mu$g/L. Risk assessment processes,. which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. The reference dose of haloacetonitriles was estimated to be 0.0023 mg/kg/day by applying dibromoacetonitrile NOAEL and uncertainty factor to the mean concentration. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL (maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates (mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for Trihalomethanes, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF

Development of the Reference Korean Female Voxel Phantom (한국인 기준여성 체적소형 모의체 개발)

  • Ham, Bo-Kyoung;Cho, Kun-Woo;Yeom, Yoen-Soo;Jeong, Jong-Hwi;Kim, Chan-Hyeong;Han, Min-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was $1.976{\times}1.976{\times}2.0619\;mm^3$ and the voxel array size is $261{\times}109{\times}825$ in the x, y and z directions. Then, the voxel resolution was changed to $2.0351{\times}2.0351{\times}2.0747\;mm^3$ for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.