• 제목/요약/키워드: Monte Carlo N-Particle (MCNP)

검색결과 40건 처리시간 0.022초

Development of gradient composite shielding material for shielding neutrons and gamma rays

  • Hu, Guang;Shi, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2387-2393
    • /
    • 2020
  • In this study, a gradient material for shielding neutrons and gamma rays was developed, which consists of epoxy resin, boron carbide (B4C), lead (Pb) and a little graphene oxide. It aims light weight and compact, which will be applied on the transportable nuclear reactor. The material is made up of sixteen layers, and the thickness and components of each layer were designed by genetic algorithm (GA) combined with Monte Carlo N Particle Transport (MCNP). In the experiment, the viscosities of the epoxy at different temperatures were tested, and the settlement regularity of Pb particles and B4C particles in the epoxy was simulated by matlab software. The material was manufactured at 25 ℃, the Pb C and O elements of which were also tested, and the result was compared with the outcome of the simulation. Finally, the material's shielding performance was simulated by MCNP and compared with the uniformity material's. The result shows that the shielding performance of gradient material is more effective than that of the uniformity material, and the difference is most noticeable when the materials are 30 cm thick.

A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;N.N. Yusof;M.I. Sayyed;K.G. Mahmoud;I. Abdullahi;S. Hashim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1734-1741
    • /
    • 2023
  • This work presents the synthesis and preparation of a new glass system described by the equation of (70-x) B2O3-5TeO2 -20SrCO3-5ZnO -xBi2O3, x = 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 ℃. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals.

말단선량계의 광자선량당량환산인자에 대한 이론적 계산 (A Theoretical Calculation of Photon Dose Equivalent Conversion Factor For Extremity Dosimeter)

  • 김광표;이원근;김종수;윤여창;윤석철
    • Journal of Radiation Protection and Research
    • /
    • 제21권1호
    • /
    • pp.41-50
    • /
    • 1996
  • 중성자 및 전자 그리고 광자 수송코드인 MCNP 4A코드를 이 용하여 ANSI N13.32에 제안된 말단팬텀과 한국원자력연구소 제작한 말단팬텀 각각에 대하여 감마선량당량환산인자를 커마근사법에 근거하여 계산하였다. 본 계산은 $15keV{\sim}1.5MeV$ 에너지영역에 대해 단일광자에너지 선원을 고려하였으며 이러한 단일광자에너지함수로서 계산한 공기커마에 대한 선량당량의 비로서 선량당량환산인자를 이론적으로 도출하였다. 본 연구에서 이론적 방법으로 도출한 ANSI와 KAERI의 말단팬텀 각각에 대한 광자선량당량환산인자를 ANSI N13.32의 실험적 방법에 의해 제시된 값들과 비교한 결과 50keV 이상의 단일 광자에너지영역에서는 실험적 방법에 의한 값들과 최대차이 5.7% 내에서 잘 일치함을 보였다. 그러나 40 keV 이하의 에너지영역에서는 본 연구의 계산 결과가 최대 13.6%까지 낮게 평가됨을 알 수 있었으며, 이러한 차이는 낮은 에너지영역에서 두드러지는 단일에너지의 생성과 관련된 실험의 불확실성과 MCNP코드에서 모사한 Geometry의 영향에 기인하는 것으로 사료된다.

  • PDF

붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구 (Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy)

  • 이동한;지영훈;이동훈;박현주;이석;이경후;서소희;김미숙;조철구;류성렬;유형준;곽호신;이창훈
    • Radiation Oncology Journal
    • /
    • 제19권1호
    • /
    • pp.66-73
    • /
    • 2001
  • 목적 : 붕소-중성자 포획치료법(Boron Neutron Capture Therapy, BNCT)을 위해 원자력병원 싸이클로트론에서 발생되는 최대에너지 34.4 MeV의 속중성자(Fast neutron)를 70 cm 파라핀으로 감속시킨 후 선량 특성을 조사하였다. 그 결과를 토대로 열외중성자(Epithermal neutron) 선량 측정법에 대한 프로토콜을 확립하여 원자로에서 방출되는 열외 중성자 선량 특성 평가의 기초를 삼고, 가속기를 이용한 BNCT 연구에 대한 타당성 여부를 조사하고자 한다. 대상 및 방법 : 공기 중 선량 및 물질 내 선량 분포 측정을 위해 Unidos 10005 (PTW, Germany) 전기계와 조직 등가 물질인 A-150 플라스틱으로 제작된 IC-17 (Far West, USA) 및 IC-18, ElC-1 이온함을 사용하였고, 감마선의 측정을 위해서는 마그네슘으로 제작된 IC-l7M 이온함을 이용하였으며 조직등가 기체와 아르곤 기체를 분당 5cc 씩 주입하며 측정하였다. 중성자, 광자, 전자가 혼합된 장의 모의 수송 해석을 위해 이용되는 Monte Carlo N-Particle (MCNP) transport code를 사용하여 2차원적 선량 분포 및 에너지 분포를 계산하였으며 이 결과를 측정값과 비교하였다. 결과 : BNCT에서의 유효 치료 깊이인 물 팬텀 4 cm에서의 선량은 치료기 1 MU 당 $6.47\times10^{-3}\;cGy$로 미세하였으며, 이때 감마 오염도(contamination)는 $65.2{\pm}0.9\%$로 중성자보다는 감마선에 의한 선량 기여분이 우세하였다. 깊이에 따른 선량 분포 특성에서는 중성자 선량은 선형적으로 감쇠 되었고, 감마선량은 지수적으로 보다 급격히 감쇠되는 경향을 보였으며 전체 선량의 $D_{20}/D_{10}$은 0.718 이었다. MCNP에 의한 에너지 분포 전산 계산의 결과 2.87 MeV 이하에서 중성자 피크가 나타났으며, 저에너지 영역에서는 감마선이 연속적으로 분포되는 양상을 보였다. 결론 : 벽 물질이 서로 다른 두 개의 이온함을 사용한 직접 선량 측정과 MCNP 전산 시뮬레이션을 이용한 공간 선량분포 계산으로 미세 속중성자 빔에 대한 선량 특성을 파악할 수 있었으며, 원자로 열외중성자 주(Epithermal neutron column)에 대한 선량 평가 자료로 확보하였다. 아울러 가속기에 대한 연구가 진행되어 고전압, 고전류를 발생시키는 전원 공급장치와 표적핵(Target) 물질이 개발되고 비스무스나 납 등에 의해 감마 오염도를 줄일 경우, 싸이크로트론에 의한 보론-중성자 포획치료도 가능해질 것으로 판단된다.

  • PDF

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.

Effectiveness of the neutron-shield nanocomposites for a dual-purpose cask of Bushehr's Water-Water Energetic Reactor (VVER) 1000 nuclear-power-plant spent fuels

  • Rezaeian, Mahdi;Kamali, Jamshid;Ahmadi, Seyed Javad;Kiani, Mohammad Amin
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1563-1570
    • /
    • 2017
  • In order to perform dry interim storage and transportation of the spent-fuel assemblies of the Bushehr Nuclear Power Plant, dual-purpose casks can be utilized. The effectiveness of different neutron-shield materials for the dual-purpose cask was analyzed through a set of calculations carried out using the Monte Carlo N-Particle (MCNP) code. The dose rate for the dual-purpose cask utilizing the recently developed materials of $epoxy/clay/B_4C$ and $epoxy/clay/B_4C/carbon$ fiber was less than the allowable radiation level of 2 mSv/h at any point and 0.1 mSv/h at 2 m from the external surface of the cask. By utilization of $epoxy/clay/B_4C$ instead of an ethylene glycol/water mixture, the dose rates on the side surface of the cask due to neutron sources and consequent secondary gamma rays will be reduced by 17.5% and 10%, respectively. The overall dose rate in this case will be reduced by 11%.

차폐체 두께에 따른 정지궤도위성용 반도체의 우주방사선 피폭 계산 (A Calculation of the Cosmic Radiation Dose of a Semiconductor in a Geostationary Orbit Satellite Depending on the Shield Thickness)

  • 허정환;고봉진;정범진
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.476-483
    • /
    • 2009
  • Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

FAST irradiations and initial post irradiation examinations - Part I

  • G. Beausoleil;L. Capriotti;B. Curnutt;R. Fielding;S. Hayes;D. Wachs
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4084-4094
    • /
    • 2022
  • The Advanced Fuels Campaign Fission Accelerated Steady-state Test (FAST) at Idaho National Laboratory (INL) completed its first irradiation cycle within the Advanced Test Reactor (ATR). The test focused on the irradiation of alloy fuel forms for use in sodium fast reactors. The first cycle of FAST testing was completed and four rodlets were removed for the initial post irradiation examination (PIE). The rodlet design and irradiation conditions were evaluated using Monte Carlo N-Particle (MCNP) for as-run power history and COMSOL for temperature analysis. These rodlets include a set of low burnups (~2.5 % fissions per initial metal atoms [%FIMA]), control rodlets, and a helium-bonded annular rodlet (4.7 %FIMA). Nondestructive PIE has been completed and includes visual inspection, neutron radiography and gamma scanning of the FAST capsules and rodlets. Radiography confirmed the integrity of the experiments, revealed that the annulus in the annular fuel was filled at a modest burnup (4.7 %FIMA), and indicated potential slumping of the cooler rodlets at lower burnup. Precision gamma scanning indicated mostly usual fission product behavior, except for cesium in the He-bonded annular fuel. Future destructive PIE will be necessary to fully interpret the effects of accelerated irradiation on U-Zr metallic fuel behavior.