• Title/Summary/Keyword: Monte Carlo 계산

Search Result 514, Processing Time 0.031 seconds

Visual Tracking Using Monte Carlo Sampling and Background Subtraction (확률적 표본화와 배경 차분을 이용한 비디오 객체 추적)

  • Kim, Hyun-Cheol;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the multi-object tracking approach using the background difference and particle filtering by monte carlo sampling. We apply particle filters based on probabilistic importance sampling to multi-object independently. We formulate the object observation model by the histogram distribution using color information and the object dynaminc model for the object motion information. Our approach does not increase computational complexity and derive stable performance. We implement the whole Bayesian maximum likelihood framework and describes robust methods coping with the real-world object tracking situation by the observation and transition model.

The Simulation of Si quantum Dot Formation in PVD Process (PVD 공정을 이용한 Si 양자점 형성 전산모사)

  • Kim, Yun-Sung;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.517-522
    • /
    • 2002
  • In this study, the effect of the processing parameters in PVD process on the size and the distribution of deposited Si quantum dots was quantitatively investigated by computational simulation utilizing Monte Carlo method. The processing parameters, substrate temperature, deposition time, gas pressure and target-substrate distance were selected as variables since those parameters are often selected as variables in PVD experiments. It is predicted that the density of $1{\times}10^{12}cm^{-2}$ Si quantum dots can be deposited on the substrate when the deposition rate is 0.05 nm/sec at the substrate temperature of 490${\circ}$, deposition time of 7 sec, gas pressure of 3 mTorr and target-substrate distance of 8 cm.

Calculation of Initial Sensitivity for Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 바나듐 자발 중성자계측기 초기 민감도 계산)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.229-234
    • /
    • 2016
  • Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the vanadium (V) SPND has been being developed to be used in OPR1000 nuclear power plants. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina insulator with a cylindrical geometry. An MCNP code was used to simulate some factors (neutron self-shielding factor and beta escape probability from the emitter) and space charge effect of an insulator necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND and contribute to the development of TMI (Top-mount In-core Instrumentation) which might be used in the SMART and SMR.

A Monte Carlo Simulation Model Development for Electron Beam Lithography Process in the Multi-Layer Resists and Compound Semiconductor Substrates (다층 리지스트 및 화합물 반도체 기판 구조에서의 전자 빔 리소그래피 공정을 위한 몬테 카를로 시뮬레이션 모델 개발)

  • 손명식
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.182-192
    • /
    • 2003
  • A new Monte Carlo (MC) simulator for electron beam lithography process in the multi-layer resists and compound semiconductor substrates has been developed in order to fabricate and develop the high-speed PHEMT devices for millimeter-wave frequencies. For the accurate and efficient calculation of the transferred and deposited energy distribution to the multi-component and multi-layer targets by electron beams, we newly modeled for the multi-layer resists and heterogeneous multi-layer substrates. By this model, the T-shaped gate fabrication process by electron beam lithography in the PHEMT device has been simulated and analyzed. The simulation results are shown along with the SEM observations in the T-gate formation process, which verifies the new model in this paper.

Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design (항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용)

  • 전상욱;이동호;전용희;김정화
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.24-32
    • /
    • 2006
  • Using a deterministic design optimization, the effect of uncertainty can result in violation of constraints and deterioration of performances. For this reason, design optimization is required to guarantee reliability for constraints and ensure robustness for an objective function under uncertainty. Therefore, this study drew Monte Carlo Simulation(MCS) for the evaluation of reliability and robustness, and selected an artificial neural network as an approximate model that is suitable for MCS. Applying to the aero-structural optimization problem of aircraft wing, we can explore robuster optima satisfying the sigma level of reliability than the baseline.

Development of DICOM Convert Program for the Geant4 Monte Carlo Simulation of the Radiotherapy (방사선치료의 Geant4 전산모사를 위한 DICOM 변환 프로그램 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.259-264
    • /
    • 2013
  • The DICOM converter program of the Geant4 Monte Carlo simulation code for the application of radiotherapy was developed. We analysis the header part of the DICOM file and find various parameters, such as matrix size, pixel size, stored data bits, high bit, and padding values. Especially we evaluate every pixel value of the DICOM files. To conform the exact convert of the pixel values, we developed the verify program. As a result, the DICOM formats generated from difference CT vendors can be converted and verified for Genat4 calculations.

Generation of Gamma-Ray Streaming Kernels Through Cylindrical Ducts Via Monte Carlo Method (몬테칼로 방법을 이용한 원통형 관통부의 감마선 스트리밍 커널의 산출)

  • Kim, Dong-Su;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.80-90
    • /
    • 1993
  • Radiation streaming through penetrations has been of great concern in radiation shielding design and analysis. This study developed a Monte Carlo method and constructed a data library of results calculated by the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, mono-energetic gamma-ray beam of unit intensity. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the library with acceptable error. Thus, the library can be used for efficient analysis of radiation streaming due to arbitrary distributions of gamma-ray sources.

  • PDF

Genetic Algorithms for Maximizing the Coverage of Sensor Deployment (최대 커버리지 센서 배치를 위한 유전 알고리즘)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.406-412
    • /
    • 2010
  • In this paper, we formally define the problem of maximizing the coverage of sensor deployment, which is the optimization problem appeared in real-world sensor deployment, and analyze the properties of its solution space. To solve the problem, we proposed novel genetic algorithms, and we could show their superiority through experiments. When applying genetic algorithms to maximum coverage sensor deployment, the most important issue is how we evaluate the given sensor deployment efficiently. We could resolve the difficulty by using Monte Carlo method. By regulating the number of generated samples in the Monte Carlo evaluation of genetic algorithms, we could also reduce the computing time significantly without loss of solution quality.

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

Optimum Sample Size for Development of Reaeration Coefficient Equation in Stream Water Quality Modeling (강물의 수질오염 modeling에 사용되는 재포기계수공식 개발을 위한 적정규모의 표본의 크기)

  • ;Charles S. Melching
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.155-167
    • /
    • 1996
  • 동일한 하천의 용전산소량(DO)을 예측하는 경우에도 사용하는 재포기계수$(K^2)$는 계산하는 공식에 따라 커다란 차이를 나타매며, 부적합한 공식의 사용에 의한 $(K^2)$의 계산은 하천의 수질관리 정책결정에 지장을 초래하므로 현장사정에 적합한 공식의 개발이 필요하다. 이러한 공식의 개발은 많은 현장측정 자료를 사용하도록 신뢰성이 높으나 현장측정은 소요되는 비용에 제약을 받기 때문에 신뢰성과 경제성을 동시에 고려한 표본의 크기의 적정규모를 산정하는 것이 필요하다. 본 연구에서는 Monte Carlo 방법에 의해 통계적으로 수출된 $(K^2)$를 사용해서, 주어진 자료에 의해 개발된 공식을 사용할 때 야기되는 오차가 $(K^2)$개수의 증가에 따라 얼마나 감소하는지를 널리 사용되는 공식 중에 Owen공식과 Churchill공식을 New Jersey에 있는 Passaic River에 적용시켜 검토하였다. 표본의 크기가 10에서 20으로 증가할 때 오차가 크게 감소하였으며 20을 넘어 증가시켰을 때에는 오차의 감소폭이 미미하였다. 초차의 감호형태와 단위측정당 소요되는 비용을 고려할 때 약 20정도의 표본의 크기가 적정수준의 규모에 판단된다. 이러한 적용사례의 결과는 회귀모델의 이론적 계산결과에 의한 오차 감소와 흡사하여 본 연구결과는 여러 가지(K2)공식과 광범위한 하천의 조건에 적용이 가능할 것이며, 본 연구에서 사용한 적정표본의 크기 산정방법은 회귀분석에 의해 실험식을 개발하는 다른 분야에도 적용이 가능하다.

  • PDF