• Title/Summary/Keyword: Monsoonal wind

Search Result 4, Processing Time 0.016 seconds

Characteristics of Strong Wind Occurrence in the Southwestern Region of Korea (한반도 남서지역에서 발생한 강풍의 원인별 특성 분석)

  • Kim, Baek-Jo;Lee, Seong-Lo;Park, Gil-Un
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • The characteristics of strong wind occurring over the southwestern part of the Korean peninsula are analyzed by using hourly mean wind data observed in Gusan, Mokpo, Yeosu and Wando from 1970 to 2008. The strong wind here is defined as wind speed of more than 13.9 m/s according to Korea Meteorological Administration (KMA)'s strong wind advisory. The causes of strong wind are classified into typhoon, monsoonal (wintertime continent polar air mass) and frontal (cyclone) winds. Typhoon wind is characterized by abrupt change of its speed and direction after and before landfall of typhoon and monsoonal wind by periodicity of wind speed. And frontal wind tend to be changed from southwesterly to northwesterly at observation site with location of frontal surface. Strong winds are mainly occurred in Yeosu by typhoon, Gusan and Mokpo by monsoonal wind, and Mokpo and Yeosu by frontal wind. In particular, in case of frontal wind, the frequency of strong wind in Mokpo decreases while in Yeosu it increases. Monthly frequency of strong wind is high in August in Mokpo and September in Yeosu by typhoon, January in Gusan and December in Mokpo by monsoonal wind, and in April in Mokpo and Yeosu by frontal wind. The duration less than 1 hour of strong wind is prominent in all stations.

Numerical Simulation of the Asian Monsoon for the Mid-Holocene Using a Numerical Model (수치모델을 이용한 홀로세 중기의 아시아 몬순순환 변화 연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Park, Yoo-Min;Suk, Bong-Chool
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • The change in global climate and Asian monsoon patterns during the mid-Holocene, 6000 years before present (6 ka), is simulated by a climate model at spectral truncations of T170 with 18 vertical layers, corresponding to grid-cell sizes of roughly 75km. The present simulation is forced with the observed monthly data of sea surface temperatures, and the specified concentration of atmospheric carbon dioxide, while in the mid-Holocene experiment, orbital parameters such as obliquity, precession, and eccentricity are changed to the 6ka conditions. Under such conditions, the precipitation associated with the summer monsoon is enhanced over a wider zonal band from the Middle East to Southeast Asia, while no significant alteration takes Place in winter. The monsoonal wind also increases over the Arabian Sea, showing the enhanced southwesterly wind during summer and northeasterly wind during winter. Overall, the showing of the Asian monsoon is enhanced during the mid-Holocene, especially in summer, which is consistent with the proxy estimates and other previous model simulations.

Impact of Change in Monsoonal Circulation Due to SST Warming on the North East Asian Monsoon: A Model Analysis Using Satellite Based Sub-Grid Hydrometeors

  • Bhattacharya, Anwesa;Park, Rae Seol;Kwon, Young Cheol
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.545-561
    • /
    • 2018
  • Over the North East Asia, extreme anomalous precipitation were observed in 2013 and 2014. During 2013 summer the precipitation was found to be higher (two standard deviation) than the climatological mean of the region; whereas during 2014, which was a borderline El Ni?o year, precipitation was found to be lower (one standard deviation). To understand the differences of these two anomalous years the Global/Regional Integrated Model system (GRIMs) has been used. The study found that low landsurface temperature and high sea-surface temperature over ocean caused a smaller land-sea contrast of surface temperature between East Asia and North West Pacific Ocean in 2014, which could have caused an eastward shift of mean monsoon circulation in that year compared to the circulation in 2013. Due to a change in the lower level circulation and wind field over East Asia the evaporation and moisture transport patterns became very different in those two years. In 2013, this study found high latent heat flux over Eastern China, which implies an increased surface evaporation over that region, and the moisture transported to the north by the mean monsoon circulation; whereas, there was no correlated transport of moisture to the North East Asia during 2014. The precipitable water over North East Asia has a stronger correlation with the latent heat flux over southern land region than that from Ocean region in the eastern side in both the years. A new approach is proposed to estimate the sub-grid scale hydrometeors from GRIMs, overestimated in the existing model.

Seasonal Variation of Global Volume Transport Calculated from an Ocean General Circulation Model

  • Jang, Chan-Joo;Noh, Yign;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2002
  • Seasonal variation in global transport calculated from an ocean general circulation model (OGCM) has been assessed through the comparison with observational estimates. The OGCM based on the GFDL MOM1.1 has honzontal grid interval of 10 and 21 verticle levels, and was integrated for 31 years forced by climatological wind stress, freshwater flux, and heat flux with restoring. General features of the world ocean circulation are well reproduced, which include the western boundary currents such as the Kuroshio and the Agulhas Current, the Equatorial Current system, the Antarctic Circumpolar Current, and the Weddell Sea gyres. Also well resolved is the remarkable seasonal variation in the depth-integrated flows in the northern Indian Ocean due to the monsoonal wind. Monthly variation is found to be dominant in the transport of the Antarctic Circumpolar Current through the Drake Passage in accordance with observational estimates. It has been shown that the mid-latitude depth-integrated flows obey the Sverdrup relation, except for some regions such as continental shelf regions where the interaction between stratification and bottom topography is critical.