• Title/Summary/Keyword: Monotonic Load

Search Result 233, Processing Time 0.021 seconds

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission (AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가)

  • Kim, Sun-Woo;Ji, Sang-Kyu;Jeon, Su-Man;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading

  • Tang, Yu Lung;Kim, Jee-Hwan;Shim, June-Sung;Kim, Sunjai
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of different coping thicknesses and veneer ceramic cooling rates on the failure load of zirconia-ceramic crowns. MATERIALS AND METHODS. Zirconia copings of two different thicknesses (0.5 mm or 1.5 mm; n=20 each) were fabricated from scanning 40 identical abutment models using a dental computer-aided design and computer-aided manufacturing system. Zirconia-ceramic crowns were completed by veneering feldspathic ceramics under different cooling rates (conventional or slow, n=20 each), resulting in 4 different groups (CONV05, SLOW05, CONV15, SLOW15; n=10 per group). Each crown was cemented on the abutment. 300,000 cycles of a 50-N load and thermocycling were applied on the crown, and then, a monotonic load was applied on each crown until failure. The mean failure loads were evaluated with two-way analysis of variance (P=.05). RESULTS. No cohesive or adhesive failure was observed after fatigue loading with thermocycling. Among the 4 groups, SLOW15 group (slow cooling and 1.5 mm chipping thickness) resulted in a significantly greater mean failure load than the other groups (P<.001). Coping fractures were only observed in SLOW15 group. CONCLUSION. The failure load of zirconia-ceramic crowns was significantly influenced by cooling rate as well as coping thickness. Under conventional cooling conditions, the mean failure load was not influenced by the coping thickness; however, under slow cooling conditions, the mean failure load was significantly influenced by the coping thickness.

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Seismic Repair of Damaged RC columns with Steel and CFRP Jackets (강판피복과 CFRP를 이용한 손상된 교각의 내진보수)

  • Choi, Sang-Hyun;Lee, Young-Ho;Lee, Hak-Eun;Youm, Kwang-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.69-75
    • /
    • 2005
  • In this paper, the comparative performance of repaired RC columns using steel and CFRP is presented. Also, the effect of transverse reinforcement ratio on the behavior of the steel and the CFRP repairing is investigated. Monotonic and cyclic load tests are conducted on nine RC column specimens with different repairing strategies and transverse reinforcement ratios to compare the load-displacement curves and the hysteretic behaviors. From the tests, it is observed that both steel and CFRP jacket repairings can significantly increase the displacement ductility and the ultimate load capacity of damaged columns.

Behaviour of bolted connections in concrete-filled steel tubular beam-column joints

  • Beena, Kumari;Naveen, Kwatra;Shruti, Sharma
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.443-456
    • /
    • 2017
  • Many authors have established the usefulness of concrete filled steel tubular (CFST) sections as compression members while few have proved their utility as flexural members. To explore their prospective as part of CFST frame structures, two types of connections using extended end plate and seat angle are proposed for exterior joints of CFST beams and CFST columns. To investigate the performance and failure modes of the proposed bolted connections subjected to static loads, an experimental program has been executed involving ten specimens of exterior beam-to-column joints subjected to monotonically increasing load applied at the tip of beam, the performance is appraised in terms of load deformation behaviour of joints. The test parameters varied are the beam section type, type and diameter of bolts. To validate the experimental behaviour of the proposed connections in CFST beam-column joints, finite element analysis for the applied load has been performed using software ATENA-3D and the results of the proposed models are compared with experimental results. The experimental results obtained agree that the proposed CFST beam-column connections perform in a semi-rigid and partial strength mode as per specification of EC3.

Performance analysis tool for reinforced concrete members

  • Esmaeily, Asad;Peterman, Robert J.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.331-346
    • /
    • 2007
  • A computer program was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load. This performance is significantly affected by the loading history. Different monotonic material models as well as hysteresis rules for confined and unconfined concrete and steel, some developed and calibrated against test results on material samples, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis. One of the assumptions on curvature distribution along the member was based on a method developed to address the variation of the plastic hinge length as a result of loading pattern. Functionality of the program was verified by reproduction of analytical results obtained by others for several cases, and accuracy of the analytical process and the implemented models were evaluated against the experimental results from large-scale reinforced concrete columns tested under the analyzed loading cases. While the program can be used to predict the response of a member under a certain loading pattern, it can also be used to examine various analytical models and methods or refine a custom material model against test data.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.