• 제목/요약/키워드: Monocular Estimation Method

검색결과 40건 처리시간 0.029초

UKF와 연동된 입자필터를 이용한 실시간 단안시 카메라 추적 기법 (Real-time Monocular Camera Pose Estimation using a Particle Filiter Intergrated with UKF)

  • 이석한
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.315-324
    • /
    • 2023
  • 본 논문에서는 UKF(unscented Kalman filter)와 연동된 입자필터를 이용한 단안시 카메라의 실시간 자세추정 기법을 제안한다. 단안시 카메라 자세 추정 기법에는 주로 카메라 영상과 자이로스코프, 가속도센서 데이터 등을 연동하는 방법이 많이 이용되고 있으나 본 논문에서 제안하는 방법은 별도의 센서 없이 카메라 영상에서 취득되는 2차원 시각 정보만을 이용하는 것을 목표로 한다. 제안된 방법은 카메라 영상 이외의 부가적인 장비를 이용하지 않고 별도의 센싱 정보 없이 2차원 영상만으로 카메라 추적이 가능하며, 따라서 기존에 비해 하드웨어 구성이 단순해질수 있다는 장점을 갖고 있다. 제안된 방법은 UKF와 연동된 입자필터를 기반으로 한다. 입자필터의 각 입자마다 개별적으로 정의된 UKF로부터 카메라의 상태를 추정한 다음 입자필터의 전체 입자로부터 카메라 상태에 대한 통계데이터를 산출하고 이로부터 카메라의 실시간 자세정보를 계산한다. 기존의 방법과 달리 제안된 방법은 카메라의 급격한 흔들림이 발생하는 경우에도 카메라 추적이 가능함을 보여주며, 영상 내의 특징점 대다수가 가려지는 환경에서도 카메라 추적에 실패하지 않음을 실험을 통하여 확인하였다. 또한 입자의 개수가 35개인 경우 프레임 당 소요 시간이 약 25ms이며 이로부터 실시간 처리에 문제가 없음을 확인할 수 있었다.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

실안개를 이용한 단일 영상으로부터의 깊이정보 획득 및 뷰 생성 알고리듬 (Depth estimation and View Synthesis using Haze Information)

  • 소용석;현대영;이상욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.241-243
    • /
    • 2010
  • Previous approaches to the 2D to 3D conversion problem require heavy computation or considerable amount of user input. In this paper, we propose a rather simple method in estimating the depth map from a single image using a monocular depth cue: haze. Using the haze imaging model, we obtain the distance information and estimate a reliable depth map from a single scenery image. Using the depth map, we also suggest an algorithm that converts the single image to 3D stereoscopic images. We determine a disparity value for each pixel from the original 'left' image and generate a corresponding 'right' image. Results show that the algorithm gives well refined depth maps despite the simplicity of the approach.

  • PDF

실내 환경에서의 로봇 자율주행을 위한 천장영상으로부터의 이종 특징점을 이용한 단일비전 기반 자기 위치 추정 시스템 (Monocular Vision Based Localization System using Hybrid Features from Ceiling Images for Robot Navigation in an Indoor Environment)

  • 강정원;방석원;크리스토퍼 쥐 애키슨;홍영진;서진호;이정우;정명진
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.197-209
    • /
    • 2011
  • This paper presents a localization system using ceiling images in a large indoor environment. For a system with low cost and complexity, we propose a single camera based system that utilizes ceiling images acquired from a camera installed to point upwards. For reliable operation, we propose a method using hybrid features which include natural landmarks in a natural scene and artificial landmarks observable in an infrared ray domain. Compared with previous works utilizing only infrared based features, our method reduces the required number of artificial features as we exploit both natural and artificial features. In addition, compared with previous works using only natural scene, our method has an advantage in the convergence speed and robustness as an observation of an artificial feature provides a crucial clue for robot pose estimation. In an experiment with challenging situations in a real environment, our method was performed impressively in terms of the robustness and accuracy. To our knowledge, our method is the first ceiling vision based localization method using features from both visible and infrared rays domains. Our system can be easily utilized with a variety of service robot applications in a large indoor environment.

Fast, Accurate Vehicle Detection and Distance Estimation

  • Ma, QuanMeng;Jiang, Guang;Lai, DianZhi;cui, Hua;Song, Huansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.610-630
    • /
    • 2020
  • A large number of people suffered from traffic accidents each year, so people pay more attention to traffic safety. However, the traditional methods use laser sensors to calculate the vehicle distance at a very high cost. In this paper, we propose a method based on deep learning to calculate the vehicle distance with a monocular camera. Our method is inexpensive and quite convenient to deploy on the mobile platforms. This paper makes two contributions. First, based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car Detection which can be used on the mobile platforms. Second, the planar homography of projective geometry is used to calculate the distance between the camera and the vehicles ahead. The results show that our detection system achieves 13FPS detection speed and 60.0% mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage space. Compared with the methods existed, the proposed method achieves a better performance.

모션 기반의 검색을 사용한 동적인 사람 자세 추적 (Dynamic Human Pose Tracking using Motion-based Search)

  • 정도준;윤정오
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2579-2585
    • /
    • 2010
  • 본 논문은 단안 카메라로부터 입력된 영상에서 모션 기반의 검색을 사용한 동적인 사람 자세 추적 방법을 제안한다. 제안된 방법은 3차원 공간에서 하나의 사람 자세 후보를 생성하고, 생성된 자세 후보를 2차원 이미지 공간으로 투영하여, 투영된 사람 자세 후보와 입력 이미지와의 특징 값 유사성을 비교한다. 이 과정을 정해진 조건을 만족 할 때까지 반복하여 이미지와의 유사성과, 신체 부분간 연결성이 가장 좋은 3차원 자세를 추정한다. 제안된 방법에서는 입력 이미지에 적합한 3차원 자세를 검색할 때, 2차원 영상에서 추정된 신체 각 부분들의 모션 정보를 사용해 검색 공간을 정하고 정해진 검색 공간에서 탐색하여 사람의 자세를 추정한다. 2차원 이미지 모션은 비교적 높은 제약이 있어서 검색 공간을 의미있게 줄일 수 있다. 이 방법은 모션 추정이 검색 공간을 효율적으로 할당 해주고, 자세 추적이 여러 가지 다양한 모션에 적응할 수 있다는 장점을 가진다

실외 자율 로봇 주행을 위한 센서 퓨전 시스템 구현 (Implementation of a sensor fusion system for autonomous guided robot navigation in outdoor environments)

  • 이승환;이헌철;이범희
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.246-257
    • /
    • 2010
  • Autonomous guided robot navigation which consists of following unknown paths and avoiding unknown obstacles has been a fundamental technique for unmanned robots in outdoor environments. The unknown path following requires techniques such as path recognition, path planning, and robot pose estimation. In this paper, we propose a novel sensor fusion system for autonomous guided robot navigation in outdoor environments. The proposed system consists of three monocular cameras and an array of nine infrared range sensors. The two cameras equipped on the robot's right and left sides are used to recognize unknown paths and estimate relative robot pose on these paths through bayesian sensor fusion method, and the other camera equipped at the front of the robot is used to recognize abrupt curves and unknown obstacles. The infrared range sensor array is used to improve the robustness of obstacle avoidance. The forward camera and the infrared range sensor array are fused through rule-based method for obstacle avoidance. Experiments in outdoor environments show the mobile robot with the proposed sensor fusion system performed successfully real-time autonomous guided navigation.

하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법 (Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences)

  • 박지헌;박상호
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.657-664
    • /
    • 2003
  • 사람의 동작을 믿을 수 있게 따라가는 것은 감시용 비디오나 사람과 컴퓨터간의 사용자 인터페이스 개발에 있어서 필수적이다. 이 논문은 모습 기반법(appearance-based method)과 모델 사용법을 혼용하여 사람을 추적하는 새로운 방법에 관한 논문이다. 하나의 비디오 입력이 화소 단위 및 물체 단위로 처리된다. 화소 단위의 처리에 있어서 개별 화소색을 분류하는 훈련방법으로, 가우스 혼합 모델(Gaussian mixture model)을 사용하였다. 물체 단위의 처리에 있어서 사람 몸에 대한 삼차원 모델링을 하고, 모델 몸체를 투사면(projection plane)에 투사시켰다. 투사된 몸체와 배경을 제외한 영상과 계산 기하 방법을 사용하여, 화소보다 작은 단위로 겹쳐지는 면적을 계산하였다. 우리의 방법은 정방향 기구학 (forward kinematics)을 사용하므로 역방향 기구학(inverse kinematics)을 사용하는 방법과 달리 계산 결함(singularity)을 갖지 않는다. 이 논문에서는 사람의 동작을 추적하기 위한 문제를 비선형 방정식 문제로 바꾸었다. 비선형 방정식의 비용 함수는 전경(foreground)의 영상 실루엣(silhouette)과 투사된 삼차원 모델 몸체의 실루엣의 겹쳐지는 면적이다. 화소 단위의 영상을 화소를 하나의 면적으로 계산함으로써, 겹쳐지는 면적에 대한 실수 단위의 계산은 계산 기하를 사용하였다. 이 논문의 방법은 다양한 사람 동작을 인식하기 위하여 사용되었다. 비디오에 나타나는 사람 동작 추적은 매우 우수하다.

적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발 (3D Range Measurement using Infrared Light and a Camera)

  • 김인철;이수용
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

단안의 무늬 그래디언트로 부터 통계학적 모델을 이용한 면 방향 추정 (Estimating Surface Orientation Using Statistical Model From Texture Gradient in Monocular Vision)

  • 정성칠;최연성;최종수
    • 대한전자공학회논문지
    • /
    • 제26권7호
    • /
    • pp.157-165
    • /
    • 1989
  • 무늬로 부터의 3차원 정보의 복구에 있어서, 투영의 왜곡효과는 왜곡된 무늬로 부터 구별되어야 한다. 그래서 본 논문에서는 가우스 구상의 보이는 면, 즉 반구상에서 무늬의 국소 해석을 통하여 면방향을 구하는 근사화된 최대유사 추정법을 제시한다. 정사영과 원을 영상시스템과 무늬소로 가정하고 원의 호길이에 일정하게 존재하는 법선방향의 정사영을 통한 법선 분포의 변화로 부터 면방향을 구한다. 구해진 면의 방향은 그래디언트 공간상의 한점으로 표시한 슬랜트와 틸트로 나타낸다. 또 구해진 면방향은 바늘지도로 나타낸다. 입력 데이터로는 임의로 만든 제주도 지도와 원무늬를 사용하여 알고리듬을 적용하였다.

  • PDF