• Title/Summary/Keyword: Monochromatic Light

Search Result 85, Processing Time 0.034 seconds

Green Light-emitting Diodes Light Stimuli during Incubation Enhances Posthatch Growth without Disrupting Normal Eye Development of Broiler Embryos and Hatchlings

  • Zhang, L.;Zhu, X.D.;Wang, X.F.;Li, J.L.;Gao, F.;Zhou, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1562-1568
    • /
    • 2016
  • Monochromatic green light-emitting diodes (LED) light stimuli influences the posthatch growth performance of chicks. This study was undertaken with the following objectives: i) to examine whether the green LED light stimuli induces an overheating effect by determining weight loss rate of fertile eggs during incubation period; ii) to look for the development of eyes and other primary organs at different ages of embryos and newly hatched chicks. Arbor Acres fertile broiler eggs (n = 480) were randomly assigned to 3 incubation groups and exposed to continuous white light, green light, or a dark environment (control) from the first day to 19 d of incubation. The light sourced from LED lamps with the intensity of 30 lx at eggshell level. The results showed that either green or white light stimuli during incubation did not significantly affect the weight loss rate of fertile eggs, hatching time, hatchability, chick embryo, or body weight (BW), the weight percentage of heart, liver, and eyes, as well as obvious systematic abnormalities in eye weight, side-to-side, back-to-front, or corneal diameter from 15 d of embryogenesis to 6 d of posthatch (p>0.05). Compared with the dark condition, green light stimuli during incubation tended to increase feed intake (p = 0.080), improved the BW gain of chicks during 0 to 6 day posthatch (p<0.05), and increased the percentage of pectoral muscle to the BW on 3- and 6-day-old chicks. In addition, embryos or chicks in green light had lower weight percentage of yolk retention on 19 d of embryogenesis and 1 d of posthatch in comparison to those in dark or white group (p<0.05). These results suggest that providing 30 lx green LED light stimuli during incubation has no detrimental effect on the development of eyes, heart and liver of embryos and hatchlings, but does have potential benefits in terms of enhancement of the chick growth during the early posthatch stages. In addition, the fertile broiler eggs stimulated with 30 lx green LED light during incubation does not cause an overheating effect.

A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength

  • Kang, Zion;Kim, Byung-Hyuk;Ramanan, Rishiram;Choi, Jong-Eun;Yang, Ji-Won;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

Growth and Anthocyanin Content of Lettuce as Affected by Artificial Light Source and Photoperiod in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 상추의 생장 및 안토시아닌 함량)

  • Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • This study was conducted to examine the effect of artificial light source and photoperiod on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings were grown under 3 light sources, fluorescent lamp (FL, Philips Co. Ltd., the Netherlands), WL #1 (Hepas Co. Ltd., Korea), and WL #2 (FC Poibe Co., Ltd., Korea), each with 3 photoperiods, 12/12, 18/6, and 24/0 (Light/Dark). An irradiance spectrum analysis showed that FL has various peaks in the 400-700 nm range, while WL #1 and WL #2 have only one monochromatic peak at 450 and 550 nm, respectively. The greatest plant height, fresh and dry weights were obtained in the 24/0 (Light/Dark) photoperiod. The 24/0 (Light/Dark) photoperiod treatment promoted vegetative growth of the leaf area. Length of the longest root, number of leaves, fresh weight, and total anthocyanin contents were greater in FL than in either WL #1 or #2. The greatest chlorophyll fluorescence (Fv/Fm) was found in the 12/12 (Light/Dark) photoperiod with FL treatment. The energy use efficiency of the LED increased by about 35-46% as compared to FL. Results suggest a possibility of LED being used as a substitute light source for fluorescent lamp for lettuce cultivation in a plant factory system.

Effects of Different Light Wavelengths on the Growth of Olive Flounder (Paralichthys olivaceus) (빛의 파장이 넙치 Paralichthys olivaceus의 성장에 미치는 영향)

  • Benedict, Ndada Regina;Kim, Yeo-Reum;Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.311-317
    • /
    • 2019
  • To investigate the effects of light on growth in fish, olive flounder (Paralichthys olivaceus) were reared under four kinds of monochromatic light-emitting diodes (LEDs) at violet (400 nm), blue (465 nm), green (508 nm), and red (635 nm) wavelengths, along with a white fluorescent lamp as control. The rearing experiments were carried out with 15 fish per tank under different wavelength illumination at the same intensity. After rearing the fish under a 12 hr:12 hr light:dark photoperiod for 60 days, percentage increases in weight gain of $269.92{\pm}13.02$, $363.21{\pm}3.74$, $433.22{\pm}4.83$, $290.17{\pm}11.83$, and $340.74{\pm}26.58%$ and increases in specific growth rates (SGR) of $2.18{\pm}0.06$, $2.56{\pm}0.07$, $2.79{\pm}0.01$, $2.27{\pm}0.05$, and $2.47{\pm}0.10$ were observed in fish grown under the illumination of red, blue, green, and violet LEDs and the white fluorescent light, respectively. The results show faster growth in fish reared under green LEDs, but slower growth in those reared under red light. Differences in most blood parameters were minor, aside from an increased level of glutamic oxaloacetic transaminase in the fish grown under red LED illumination. Histological analysis of the retina showed few changes in the ratio of photoreceptor layer thickness to total retina thickness in fish reared under the green LEDs compared to those in other illumination groups. These results indicate that green LED light can foster increased growth in olive flounder with no distinct harmful effects on their light-sensitive photoreceptor layers.

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

The Image and Color Characteristic of Fashion Tinged with Beige (현대패션에서 나타난 베이지의 색채특성과 배색이미지)

  • Seo, In-Kyung;Kim, Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.6
    • /
    • pp.19-37
    • /
    • 2012
  • This study was done to define the color range, images and color characteristics of beige in fashion by analyzing the characteristics of beige that appears in contemporary fashion. In reference research, the general characteristics, the color name and range of beige was examined. In investigation research, color characteristics and images of beige that appear in contemporary fashion was defined, and it was discovered that the cases that the use of beige took more than 50% of the entire in the major collection from S/S season in 2007 to F/W season in 2010 as the subject of color analysis. The result of the study could be summarized as follows: First, the color range of beige consisted of the standard color from 2.5YR to 5YR, and color tone was pale and light gray. Second, the analysis of color beige that appear in contemporary fashion didn't show big differences according to year, season, and region. The color tones consisted of light grayish, pale, light, soft focusing colors from 5YR to 10YR. As for the arrangement of colors, it was arranged with black and it was used with the affiliation of YR, R, Y in many cases. Third, beige monochromatic image appeared soft, plain and classic. The arrangement of the image, modern, feminine, luxurious, gentle, intelligent five types were derived. Arrangements with achromatic colors were expressed in contemporary and sophisticated styles and arrangements with chromatic colors appeared to be soft, feminine and luxurious. This study draws the result to apply the fashion image of beige that was insufficient in other various color researches to design various color aspects by defining the image of beige that appears in contemporary fashion. Based on practical analysis for the color beige, it is evident that beige is an important factor and a powerful influence on fashion images.

Influence of Monochromatic Light on Photosynthesis and Leaf Bleaching in Panax species (단색광이 인삼속 식물의 광합성과 잎표백화에 미치는 영향)

  • Lee Sung-Sik;Proctor John T.A.;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.1-7
    • /
    • 1999
  • Photosynthetic rates and leaf bleaching were measured under light of far-red, red, orange, green, blue and white in order to clarify the effect of light qualities on photosynthesis in Panax species, P. ginseng and P. quinquefolium. Photosynthetic rate of P. ginseng and P. quinquifolium showed higher in the order under the light of red > orange > blue > white > green. Degree of leaf bleaching in P. quinquifolium showed severer in the order under the light of far-red > red > white > blue > orange > green. These suggest that shading material with blue or orange color is good for ginseng growth. As for the effect of temperature, the photosynthesis was increased with increasing temperature untill $25^{\circ}C$ and thereafter decreased. Therefore, it was clarified that the optimum temperature for photosynthesis of P. ginseng and P. quinquefolium was $25^{\circ}C$. And the dark respiration rate of ginseng leaf also increased with increasing air temperature. Especially, the dark respiration rate increased by $80\%$ for P. ginseng and by $73\%$ for P.quinquefolium at above $30^{\circ}C$ as compared with $25^{\circ}C$. In general, the photosynthesis rate was higher in P. quinquifolium than in P. ginseng and ranged from 3.54 to 4.04 mg $(CO_2{\cdot}dm^{-2}{\cdot}hr^{-1})$ for P. quinquefolium and from 2.08 to 2.59 mg$(CO_2{\cdot}dm^{-2}{\cdot}hr^{-1})$ for P. ginseng.

  • PDF

Organic Nanotube Induced by Photocorrosion of CdS Nanorod

  • Choi, Sung-Won;Yoon, Joong-Ho;An, Myoung-Jin;Chae, Won-Sik;Cho, Hyeon-Mo;Choi, Moon-Gun;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.983-985
    • /
    • 2004
  • PMMA-coated CdS nanorod was prepared by encapsulation of CdS nanorod through the polymerization process of PMMA on the surface of CdS nanorod. PMMA organic nanotube was then obtained from the elimination of the CdS nanorod by the photocorrosion. For the photocorrosion reaction of the CdS nanorod, monochromatic light was irradiated to the oxygen-saturated aqueous methyl viologen solution with PMMAcoated CdS nanorod. Photocorrosion reactions of PMMA-coated CdS nanorod were investigated and characterized by utilizing UV-Vis absorption, X-ray diffraction (XRD) and scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images.

Optical design of three-mirror telescope system for infra-red and visible imaging (적외선 및 가시광선 결상용 3반사망원경계의 설계)

  • 이종웅;홍경희;권우근
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 1996
  • To design three-mirror telescope system (F/8, 120 inch in focal length) for visible and infra-red band imaging, methods for power configuring and correction of the third order aberrations were studied. In the design of the telescope system, a three-mirror system corrected for spherical aberration, coma, and astigmatism was used for infra-red imaging, and the aberrations were corrected by using conic surfaces. For visible imaging, a singlet corrector lens was appended at the front of the focal plane to correct filed curvature. The telescope system has diffraction limited performance for 10 ${\mu}{\textrm}{m}$ in wavelength within 2.4$^{\circ}$ of field-of-view. In the visible band imaging, the rms spot size of the telescope system is less than 25 ${\mu}{\textrm}{m}$ within 3$^{\circ}$ of field-of-view for monochromatic light, and the telescope system satisfies flat field condition for CCD application.

  • PDF

Absolute Distance Measurements Using the Optical Comb of a Femtosecond Pulse Laser

  • Jin, Jong-Han;Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.22-26
    • /
    • 2007
  • We describe a new way of implementing absolute displacement measurements by exploiting the optical comb of a femtosecond pulse laser as a wavelength ruler, The optical comb is stabilized by locking both the repetition rate and the carrier offset frequency to an Rb clock of frequency standard. Multiwavelength interferometry is then performed using the quasi-monochromatic beams of well-defined generated wavelengths by tuning an external cavity laser diode consecutively to preselected light modes of the optical comb. This scheme of wavelength synthesizing allows the measurement of absolute distances with a high precision that is traceable to the definition of time. The achievable wavelength uncertainty is $1.9{\times}10^{-10}$, which allows the absolute heights of gauge blocks to be determined with an overall calibration uncertainty of 15 nm (k = 1). These results demonstrate a successful industrial application of an optical frequency synthesis employing a femtosecond laser, a technique that offers many possibilities for performing precision length metrology that is traceable to the well-defined international definition of time.