• 제목/요약/키워드: Monitoring to long term and real time vibration

검색결과 8건 처리시간 0.022초

진동 지반다짐 공법에 대한 장기간 진동계측 사례 (Vibration monitoring at Vibrating Compaction Works for Ground Improvement)

  • 김덕영;김선웅
    • 화약ㆍ발파
    • /
    • 제33권2호
    • /
    • pp.40-43
    • /
    • 2015
  • 본 연구에서는 싱가폴 창이 국제공항 신규 터미널(5번) 확장 지반 보강공사에 적용된 진동다짐공법을 소개하고 이에 따라 발생되는 진동을 장기간 실시간으로 측정하기 위하여 최적의 진동 분석 S/W 개발을 완료하였다. 아울러 이와 유사한 파일항타 작업 진동이나, 방파제 설계를 위한 주기적 반복적으로 발생하는 파도에 의한 진동이나 초고층 건물, 터널, 교량 등 대형구조물에서 발생하는 진동을 장시간에 걸쳐 실시간으로 측정이 가능함을 알아보고자 하였다.

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

Monitoring a steel building using GPS sensors

  • Casciati, Fabio;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.349-363
    • /
    • 2011
  • To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors' laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan

  • Chiu, Yi-Tsung;Lin, Tzu-Kang;Hung, Hsiao-Hui;Sung, Yu-Chi;Chang, Kuo-Chun
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.1015-1039
    • /
    • 2014
  • The widening project on Freeway No.1 in Taiwan has a total length of roughly 14 kilometers, and includes three special bridges, namely a 216 m long-span bridge crossing the original freeway, an F-bent double decked bridge in a co-constructed section, and a steel and prestressed concrete composite bridge. This study employed in-situ monitoring in conjunction with numerical modeling to establish a real-time monitoring system for the three bridges. In order to determine the initial static and dynamic behavior of the real bridges, forced vibration experiments, in-situ static load experiments, and dynamic load experiments were first carried out on the newly-constructed bridges before they went into use. Structural models of the bridges were then established using the finite element method, and in-situ vehicle load weight, arrangement, and speed were taken into consideration when performing comparisons employing data obtained from experimental measurements. The results showed consistency between the analytical simulations and experimental data. After determining a bridge's initial state, the proposed in-situ monitoring system, which is employed in conjunction with the established finite element model, can be utilized to assess the safety of a bridge's members, providing useful reference information to bridge management agencies.

상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발 (Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring)

  • 박준영;신준식;원종빈;박종웅;박민용
    • 한국전산구조공학회논문집
    • /
    • 제34권5호
    • /
    • pp.301-308
    • /
    • 2021
  • 사회기반 시설물의 노후화에 대응해 이상 징후를 파악하고 유지보수를 위한 최적의 의사결정을 내리기 위해선 디지털 기반 SOC 시설물 유지관리 시스템의 개발이 필수적인데, 디지털 SOC 시스템은 장기간 구조물 계측을 위한 IoT 센서 시스템과 축적 데이터 처리를 위한 클라우드 컴퓨팅 기술을 요구한다. 본 연구에서는 구조물의 다물리량을 장기간 측정할 수 있는 IoT센서와 클라우드 컴퓨팅을 위한 서버 시스템을 개발하였다. 개발 IoT센서는 총 3축 가속도 및 3채널의 변형률 측정이 가능하고 24비트의 높은 해상도로 정밀한 데이터 수집을 수행한다. 또한 저전력 LTE-CAT M1 통신을 통해 데이터를 실시간으로 서버에 전송하여 별도의 중계기가 필요 없는 장점이 있다. 개발된 클라우드 서버는 센서로부터 다물리량 데이터를 수신하고 가속도, 변형률 기반 변위 융합 알고리즘을 내장하여 센서에서의 연산 없이 고성능 연산을 수행한다. 제안 방법의 검증은 2개소의 실제 교량에서 변위계와의 계측 결과 비교, 장기간 운영 테스트를 통해 이뤄졌다.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템 (Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics)

  • 신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.183-189
    • /
    • 2021
  • 구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.

Combining GPS and accelerometers' records to capture torsional response of cylindrical tower

  • AlSaleh, Raed J.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.111-122
    • /
    • 2020
  • Researchers up to date have introduced several Structural Health Monitoring (SHM) techniques with varying advantages and drawbacks for each. Satellite positioning systems (GPS, GLONASS and GALILEO) based techniques proved to be promising, especially for high natural period structures. Particularly, the GPS has proved sufficient performance and reasonable accuracy in tracking real time dynamic displacements of flexible structures independent of atmospheric conditions, temperature variations and visibility of the monitored object. Tall structures are particularly sensitive to oscillations produced by different sources of dynamic actions; such as typhoons. Wind forces induce in the structure both longitudinal and perpendicular displacements with respect to the wind direction, resulting in torsional effects, which are usually more complex to be detected. To efficiently track the horizontal rotations of the in-plane sections of such flexible structures, two main issues have to be considered: a suitable sensor topology (i.e., location, installation, and combination of sensors), and the methodology used to process the data recorded by sensors. This paper reports the contributions of the measurements recorded from dual frequency GPS receivers and uni-axial accelerometers in a full-scale experimental campaign. The Canton tower in Guangzhou-China is the case study of this research, which is instrumented with a long-term structural health monitoring system deploying both accelerometers and GPS receivers. The elaboration of combining the obtained rather long records provided by these two types of sensors in detecting the torsional behavior of the tower under ambient vibration condition and during strong wind events is discussed in this paper. Results confirmed the reliability of GPS receivers in obtaining the dynamic characteristics of the system, and its ability to capture the torsional response of the tower when used alone or when they are combined with accelerometers integrated data.