• Title/Summary/Keyword: Monitoring index

Search Result 1,321, Processing Time 0.029 seconds

Condition Monitoring of Tool Wear and Breakage using Sound Pressure in Turning Processes (선삭공정에서 음압을 이용한 공구마멸 파손의 상태감시)

  • 이성일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.36-43
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstations to provide the required intelligence of the expert. This paper deals with condition monitoring for tool wear and breakage during turning operation. Developing economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. The validity of the proposed system is confirmed through the large number of cutting tests.

  • PDF

Data Analysis and Health Index for Health Monitoring of Seohae Bridge (서해대교 건전성 모니터링을 위한 데이터 분석 및 건전성지수)

  • Kim, Hyunsu;Kim, Yuhee;Park, Jongchil;Shin, Soobong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.387-395
    • /
    • 2013
  • It is important to collect reliable measured data for proper bridge health monitoring. However, in reality incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In case of sensor malfunction, parts of measured data are missing and thus health monitoring cannot be carried out reliably. Due to environmental effects such as temperature variation, dynamic characteristics of natural frequencies may change as if the structure is damaged. The paper proposes a systematic procedure of data processing and data analysis for reliable structural health monitoring. Also, it applies the Mahalanobis distance as a health index computed statistically using revised data. The proposed procedure has been examined using numerically simulated data from a truss structure and then applied to a set of field data measured from Seohae cable-stayed bridge.

Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index (위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Kim, Ha-Young;Woo, Seung-Beom;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.47-57
    • /
    • 2021
  • Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspiration for quantitative drought determination, ESI (Evaporative Stress Index), was applied and calculated through the ratio of MODIS- based actual and potential evapotranspiration. For the irrigated areas of Idong, Gosam, Geumgwang, and Madun reservoirs the availability of irrigation water supply, ponding depth, precipitation, paddy growth were investigated for the paddy field within one grid of MODIS. In addition, the percentile-based ESI drought severity was calculated to compare the growth process of paddy and changes in the drought category of ESI. The Idong area was irrigated about a week later than other reservoirs for the period of water supply, transplanting, and water drainage and the ESI drought category tended to be different. The Gosam, Geumgwang, and Madun area expressed moderate drought prior to the farming season, and indicated normal as the water was supplied. During the water drainage, the drought category intensified, indicating that the water available on land was decreasing. These results demonstrated that the MODIS-based ESI could be an effective tool for agricultural drought monitoring over paddy field area.

An Efficient Algorithm for Monitoring Continuous Top-k Queries (연속 Top-k 질의 모니터링을 위한 효율적인 알고리즘)

  • Jang, JaeHee;Jung, HaRim;Kim, YougHee;Kim, Ung-Mo
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2016
  • In this study, we propose an efficient method for monitoring continuous top-k queries. In contrast to the conventional top-k queries, the presented top-k query considers both spatial and non-spatial attributes. We proposed a novel main-memory based grid access method, called Bit-Vector Grid Index (BVGI). The proposed method quickly identifies whether the moving objects are included in some of the grid cell by encoding a non-spatial attribute value of the moving object to bit-vector. Experimental simulations demonstrate that the proposed method is several times faster than the previous method and uses considerably less memory.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Classifying meteorological drought severity using a hidden Markov Bayesian classifier

  • Sattar, Muhammad Nouman;Park, Dong-Hyeok;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.150-150
    • /
    • 2019
  • The development of prolong and severe drought can directly impact on the environment, agriculture, economics and society of country. A lot of efforts have been made across worldwide in the planning, monitoring and mitigation of drought. Currently, different drought indices such as the Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) are developed and most commonly used to monitor drought characteristics quantitatively. However, it will be very meaningful and essential to develop a more effective technique for assessment and monitoring of onset and end of drought. Therefore, in this study, the hidden Markov Bayesian classifier (MBC) was employed for the assessment of onset and end of meteorological drought classes. The results showed that the probabilities of different classes based on the MBC were quite suitable and can be employed to estimate onset and end of each class for meteorological droughts. The classification results of MBC were compared with SPI and with past studies which proved that the MBC was able to account accuracy in determining the accurate drought classes. For more performance evaluation of classification results confusion matrix was used to find accuracy and precision in predicting the classes and their results are also appropriate. The overall results indicate that the MBC was effective in predicating the onset and end of drought events and can utilized for monitoring and management of short-term drought risk.

  • PDF

Estimation of Fish Habitat Suitability Index for Stream Water Quality - Case Species of Zacco platypus - (하천 수질에 대한 어류의 서식처적합도지수 산정 - 피라미를 대상으로 -)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • The conservation of stream habitats has been gaining more public attention and fish habitat suitability index (HSI) is an important measure for ecological stream habitat assessment. The fish habitat preference is affected not only by physical stream conditions but also by water quality of which HSI was not available due to the lack of field data. The purpose of this study is to estimate the HSI of Zacco platypus for water quality parameters of water temperature, dissolved oxygen (DO), and biochemical oxygen demand (BOD) using the water environment monitoring data provided by the Ministry of Environment (ME). Fish population data merged with water quality were constructed by spatio-temporal matching of nationwide water quality monitoring data with bio-monitoring data of the ME. Two types of the HSI were calculated by the Instream Flow and Aquatic Systems Group (IFASG) method and probability distribution (Weibull) fitting for the four major river basins. Both the HSIs by the IFASG and Weibull fitting appeared to represent the overall distribution and magnitude of fish population and this can be used in stream fish habitat evaluation considering water quality.

Study on Cure Monitoring for Epoxy Resin Using Fiber Optic Sensor System (광섬유 센서를 이용한 에폭시 수지의 경화도 측정)

  • Kim, J.B.;Byun, J.H.;Lee, C.H.;Lee, S.K.;Um, M.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.37-41
    • /
    • 2005
  • The curing of thermoset resin is accompanied with the changes in chemical and physical properties. The cure monitoring techniques can be designed by tracing these property changes. This paper presents the cure monitoring technique with fiber optic sensors to detect the change of refractive index during the polymerization process of engineering epoxy resin. The fiber optic sensor system was developed to measure the reflection coefficient at the interface between the fiber optic and the resin. The correlation between the sensor output and the degree of cure was performed following Lorentz-Lorenz law. The isothermal data from the sensors are compared with the data from differential scanning calorimeter.

  • PDF

Bridge Health Monitoring with Consideration of Environmental Effects

  • Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.648-660
    • /
    • 2012
  • Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.