• Title/Summary/Keyword: Monitoring data

Search Result 9,138, Processing Time 0.039 seconds

Impact of Weather on Prevalence of Febrile Seizures in Children (소아의 열성경련에 날씨가 미치는 영향)

  • Woo, Jung Hee;Oh, Seok Bin;Yim, Chung Hyuk;Byeon, Jung Hye;Eun, Baik-Lin
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • Purpose: Febrile seizure (FS) is the most common type of seizure in children between 6 months to 5 years of age. A family history of febrile seizures can increase the risk a child will have a FS. Yet, prevalence of FS regarding external environment has not been clearly proved. This study attempts to determine the association between prevalence of FS and weather. Methods: This study included medical records from the Korea National Health Insurance Review and Assessment Service. Data were collected from 29,240 children, born after 2004, diagnosed with FS who were admitted to one of the hospitals in Seoul, Korea, between January 2009 and December 2013. During the corresponding time period, data from the Korea Meteorological Administration on daily monitoring of four meteorological factors (sea-level pressure, amount of precipitation, humidity and temperature) were collected. The relationships of FS prevalence and each meteorological factor will be designed using Poisson generalized additive model (GAM). Also, the contributory effect of viral infections on FS prevalence and weather will be discussed. Results: The amount of precipitation was divided into two groups for comparison: one with less than 5 mm and the other with equal to or more than 5 mm. As a result of Poisson GAM, higher prevalence of FS showed a correlation with smaller amount of precipitation. Smoothing function was used to classify the relationships between three variables (sea-level pressure, humidity, and temperature) and prevalence of FS. FS prevalence was correlated with lower sea-level pressure and lower humidity. FS prevalence was high in two temperature ranges (-7 to $-1^{\circ}C$ and $18-21^{\circ}C$). Conclusion: Low sea-level pressure, small amount of precipitation, and low relative air humidity may increase FS prevalence risk.

Disability-Rights Based International Cooperation: With Some References to North Korea (장애 권리 기반한 국제협력: 북한 관련하여)

  • Kim, Hyung Shik;Woo, Joo Hyung
    • 재활복지
    • /
    • v.22 no.2
    • /
    • pp.1-30
    • /
    • 2018
  • This paper attempts to explore the place of human and disability rights from the perspective of Social Welfare within the context of the UN Disability Rights Convention of 2006. The overall discussion is focused especially upon the situations of human and disability rights in the Democratic People's Republic of Korea (North Korea) as it is being challenged to drastically address the issues of human rights in general, and disability rights in particular. The UN Disability Rights Convention challenges every ratified State party to commence legal reforms, legal harmonization, and policy and program developments to implement the Convention. Both North and South Korea are not exceptions to this. Even without drawing upon the UN's the Commission of Inquiry on Human Rights in the Democratic People's Republic of Korea, the dire situation of human rights in North Korea is well documented. However, this paper does not assume South Korea's human rights are any way superior to that of North Korea. This paper spells out areas for further action common to two Koreas and to any other nations for that matter. Apart from the general discussion on disability rights, the distinctive contribution of this paper lies in the fact that it has endeavored to draw upon any latest information and data on North Korea. It relied on various sources from UN and also from North Korea itself. One can note that North Korean disability authorities are making strenuous efforts to improve human rights of persons with disabilities in their desires to seek assistance from outside. It also shows an enormous need for international cooperation in seeking financial and material supports. This paper notes the latest political development between North and South Korea in taking "phased" steps for peace and stability as a positive sign for North and South Koreans' DPOs collaboration under the banner of International Cooperation of the article 32 of the UN Disability Rights Convention. More critically, this paper points to the further need to improve the overall data bases to ensure balanced legal reforms, policy developments and sharpen the areas of international collaboration.

Monitoring the Coastal Waters of the Yellow Sea Using Ferry Box and SeaWiFS Data (정기여객선 현장관측 시스템과 SeaWiFS 자료를 이용한 서해 연안 해수환경 모니터링)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Min, Jee-Eun;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.323-334
    • /
    • 2007
  • We analyzed the ocean environmental data from water sample and automatic measurement instruments with the Incheon-Jeju passenger ship for 18 times during 4 years from 2001 to 2004. The objectives of this study are to monitor the spatial and temporal variations of ocean environmental parameters in coastal waters of the Yellow Sea using water sample analysis, and to compare and analyze the reliability of automatic measurement sensors for chlorophyll and turbidity using in situ measurements. The chlorophyll concentration showed the ranges between 0.1 to $6.0mg/m^3$. High concentrations occurred in the Gyeonggi Bay through all the cruises. The maximum value of chlorophyll concentration was $16.5mg/m^3$ in this area during September 2004. The absorption coefficients of dissolve organic matter at 400 nm showed below $0.5m^{-1}$ except those in August 2001 During 2002-2003, it did not distinctly change the seasonal variations with the ranges 0.1 to $0.4m^{-1}$. In the case of suspended sediment (SS) concentration, most of the area showed below $20g/m^3$ through all seasons except the Gyeonggi Bay and around Mokpo area. In general SS concentration of autumn and winter season was higher than that of summer. The central area of the Yellow Sea appeared to have lower value $10g/m^3$. The YSI fluorometer for chlorophyll concentration had a very low reliability and turbidity sensor had a $R^2$ value of 0.77 through the 4 times measurements comparing with water sampling method. For the automatic measurement using instruments for chlorphlyll and suspended sediment concentration, McVan and Choses sensor was greater than YSI multisensor. The SeaWiFS SS distribution map was well spatially matched with in situ measurement, however, there was a little difference in quantitative concentration.

An Introduction of Korean Soil Information System (한국 토양정보시스템 소개)

  • Hong, S. Young;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Yi-Hyun;Jung, Sug-Jae;Park, Chan-Won;Song, Kwan-Cheol;Jang, Byoung-Choon;Choe, Eun-Young;Lee, Ye-Jin;Ha, Sang-Keun;Kim, Myung-Suk;Lee, Jong-Sik;Jung, Goo-Bok;Ko, Byong-Gu;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Detailed information on soil characteristics is of great importance for the use and conservation of soil resources that are essential for human welfare and ecosystem sustainability. This paper introduces soil inventory of Korea focusing on national soil database establishment, information systems, use, and future direction for natural resources management. Different scales of soil maps surveyed and soil test data collected by RDA (Rural Development Administration) were computerized to construct digital soil maps and database. Soil chemical properties and heavy metal concentrations in agricultural soils including vulnerable agricultural soils were investigated regularly at fixed sampling points. Internet-based information systems for soil and agro-environmental resources were developed based on 'National Soil Survey Projects' for managing soil resources and for providing soil information to the public, and 'Agroenvironmental Change Monitoring Project' to monitor spatial and temporal changes of agricultural environment will be opened soon. Soils data has a great potential of further application in estimation of soil carbon storage, water capacity, and soil loss. Digital mapping of soil and environment using state-of-the-art and emerging technologies with a pedometrics concept will lead to future direction.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Analysis of Pinewood Nematode Damage Expansion in Gyeonggi Province Based on Monitoring Data from 2008 to 2015 (경기도의 소나무재선충병 피해 확산 양상 분석: 2008 ~ 2015년 예찰 데이터를 기반으로)

  • Park, Wan-Hyeok;Ko, Dongwook W.;Kwon, Tae-Sung;Nam, Youngwoo;Kwon, Young Dae
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.486-496
    • /
    • 2018
  • Pine wilt disease (PWD) in Gyeonggi province was first detected in Gwangju in 2007, and ever since has caused extensive damage. Insect vector and host tree in Gyeonggi province are Monochamus saltuarius and Pinus koraiensis, respectively, which are different from the southern region that consist of Monochamus alternatus and Pinus densiflora. Consequently, spread and mortality characteristics may be different, but our understanding is limited. In this research, we utilized the spatial data of newly infected trees in Gyeonggi province from 2008 to 2015 to analyze how it is related to various environmental and human factors, such as elevation, forest type, and road network. We also analyzed the minimum distance from newly infected tree to last year's closest infected tree to examine the dispersal characteristics based on new outbreak locations. Annual number of newly infected trees rapidly increased from 2008 to 2013, which then stabilized. Number of administrative districts with infected trees was 5 in 2012, 11 in 2013, and 15 in 2014. Most of the infected trees was Pinus koraiensis, with its proportion close to 90% throughout the survey period. Mean distance to newly infected trees dramatically decreased over time, from 4,111 m from 2012 to 2013, to approximately 600 m from 2013 to 2014 and 2014 to 2015. Most new infections occurred in higher elevation over time. Distance to road from newly infected trees continuously increased, suggesting that natural diffusion dispersal is increasingly occurring compared to human-influenced dispersal over time.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.