• Title/Summary/Keyword: Monitoring channel

Search Result 459, Processing Time 0.026 seconds

Power Monitoring System with Multiple Input Channels Using the Definition of IEEE Standard 1459-2010 (IEEE 1459-2010 규격의 정의를 이용한 다중 입력 채널을 갖는 전력 감시 시스템)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3100-3106
    • /
    • 2014
  • This paper develops power measurement system with multiple sensor input channels (voltage-8 channels and current-10 channels) that simultaneously can monitor power components for both supply and load side of power system. The hardware implementation of the proposed system is based on TMS320C42 DSP and signal processing program algorithm to calculate power components use the definition of IEEE Standard 1459-2010 related power quality. The performance of the developed system is tested by using standard ac power source device, and the test results showed that accuracy of the developed system is less than 0.2 %. Also, field test of the proposed system in the three-phase and four-wire power system was implemented. Simultaneous multiple channel measurement and analysis of power components in commercial and industrial electrical power system using the proposed system will be necessary to reduce power quality problems.

A Study on the Sensor Module System for Real-Time Risk Environment Management (실시간 위험환경 관리를 위한 센서 모듈시스템 연구)

  • Cho, Young Chang;Kwon, Ki Jin;Jeong, Jong Hyeong;Kim, Min Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.953-958
    • /
    • 2018
  • In this study, a portable detection system was developed that can detect harmful gas and signals simultaneously in an enclosed space of industrial sites and underground facilities. The developed system is a sensor module for gas detection, a patch type 1 channel small ECG sensor, a module for three-axial acceleration detection sensor, and a system for statistics. In order to verify the performance of the system modules, the digital resolution, signal frequency, output voltage, and ultra-small modules were evaluated. As a result of the performance of the developed system, the digital resolution was 300 (rps) and the signal amplification gain was 500 dB or more, and the ECG module was manufactured with $50mm{\times}10mm{\times}10mm$ to increase patch utilization. It is believed that the product of this research will be valuable if it is used as an IoT-based management system for real-time monitoring of industrial workers.

A development of a multimodal patch-type probe for measuring blood flow and oxygen saturation in carotid artery (경동맥 혈류 속도 및 산소 포화도 측정을 위한 다중모드 패치형 프로브 개발)

  • Youn, Sangyeon;Lee, Kijoon;Kim, Jae Gwan;Hwang, Jae Youn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2019
  • To protect the patient's internal organs when a patient with cardiovascular disease occurs, it is important to reduce the elapsed time by providing emergency medical services. Decisions for conducting cardiopulmonary resuscitation are mainly made using the carotid palpation method, which directs the pulse of the carotid artery, which can diagnose the patient's condition according to one's own subject and cause cerebral blood flow to be blocked by excessive pressure in the carotid due to the weaken cardiopulmonary function. In this study, we developed a multimodal patch-type probe based on multi-channel ultrasound Doppler pairs and oxygen saturation measurement modules which can monitor cardiopulmonary functions. From the in-vivo experiments, the developed probe can be utilized as a novel tool that can increase the survival rate of cardiovascular disease patients by objectively monitoring the cardiopulmonary function of the patient quantitatively and promptly in an emergency situation.

Design of the Control and Monitoring Architecture for the KVN 4 Channel Receiver System using Profibus

  • Song, Min-Gyu;Byun, Do-Young;Je, Do-Heung;Kang, Yong-Woo;Wi, Seog-Oh;Lee, Sung-Mo;Lee, Jung-Won;Chung, Moon-Hee;Kim, Seung-Rae;Jung, Tae-Hyun;Lee, Eui-Kyum;Lee, Sang-Hyun;Hwang, Jung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.57.3-57.3
    • /
    • 2018
  • KVN 수신기는 22/43/86/129GHz 주파수 대역의 우주전파를 관측할 수 있는 4채널 동시 관측 시스템의 핵심으로 다수의 제어 및 모니터 항목이 존재한다. 대표적인 예로 Synthesizer, Pcal, LO, Vacuum, Cryogenic Temperature 등이 있으며 이와 관련된 여러 인스트루먼트가 21m 전파망원경의 하부단에 위치한 수신기실 내에 분산 배치되어 있다. 이에 대한 효율적인 제어를 위해서는 사용자 컴퓨터 관점에서 두 가지 조건이 충족되어야 한다. 첫째, 물리적으로 분산된 인스트루먼트에 대한 접근 및 변경이 용이해야 하고, 둘째는 단일 인터페이스 상에서 다양한 인스트루먼트를 하나로 통합하는 확장성이 보장되어야 한다. 이러한 요건을 고려하여 KVN은 산업 분야에서 널리 쓰이고 있는 프로피버스를 수신기 시스템의 제어를 위한 기반 인터페이스로 활용 중에 있고, 추가 기능 요구에 효율적으로 대처하고 있다. 본 발표에서는 먼저 KVN 수신기 시스템을 구성하는 인스트루먼트에 대해 살펴보고자 한다. 그리고 이를 효율적으로 제어하기 위한 기반 인터페이스로서 프로피버스 구축 및 활용 현황에 대해 논하고자 한다.

  • PDF

Characteristics of Water Quality and Chlorophyll-a in the Seawater Zone of the Yeongsan River Estuary: Long-term (2009-2018) Data Analysis (영산강 하구 해수역의 수질 및 식물플랑크톤 생체량(chlorophyll-a) 변동 특성: 장기(2009-2018년) 자료 분석)

  • Park, Sangjun;Sin, Yongsik
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.13-27
    • /
    • 2022
  • The Yeongsan River estuary was altered by a sea dike built in 1981 and the sluice gates in the dike were extended recently in 2014. The construction has caused changes in water properties and hydrodynamics and also produced disturbances including hypoxia and algal blooms. We analyzed the water quality and chlorophyll-a data (2009-2018) collected seasonally at 3 stations (Sts. 1-3) along the channel of the estuary by the Marine Environmental Monitoring System. Variations in water quality and chlorophyll-a (an index of phytoplankton biomass) were examined and their stressors were also identified by statistics including correlation and multivariate principal component analyses (PCA). The water quality was mainly affected by freshwater discharge from the dike. Salinity, nutrients and chlorophyll-a were especially affected by the discharge and the effect enhanced during summer and at the upper region near the sea dike decreasing downstream. Three factors were extracted for each station in the PCA accounting for 66.07-72.42% of the variations. The first was an external factor associated with freshwater discharge and the second and third were seasonal or biological factors. The results indicate that the water quality is more affected by short-termed and episodic events such as freshwater discharge than seasonal events and the influence of freshwater discharge on water quality is more extensive than that previously reported. This suggests that the boundary of the estuary should be extended to take into account the findings of this study and a management strategy linked to the freshwater zone is required to manage the integrity and water quality of the Yeongsan River estuary.

Technical Considerations of Effective Direct Cortical and Subcortical Stimulation (효과적인 대뇌 직접피질자극 검사 및 피질하자극 검사의 술기에 관한 기술적 고찰)

  • Lim, Sung Hyuk;Jang, Min Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.157-162
    • /
    • 2022
  • The purpose of the direct cortical and subcortical stimulation technique is to prevent false positives caused by transcranial electrical motor evoked potentials (TceMEP) in surgery on patients with brain tumors that have occurred around the motor cortex and to preserve the correct mapping of motor areas during surgery and the corticospinal tract. In addition, it reduces the trial and error that occurs during the intraoperative neurophysiological monitoring (INM) process and minimizes the test time, so that accurate information is communicated to the surgeon with quick feedback on the test results. The most important factors of this technique are, first, examination at a stimulus threshold of a certain intensity, and second, maintaining anesthesia depth at an appropriate level to prevent false positives from occurring during surgery. The third is the installation of a multi-level channel recording electrode on the opposite side of the area of operation to measure the TceMEP waveform and the response to direct cortical and subcortical stimulation in as many muscles as possible. If these conditions are maintained, it is possible to predict causes that may occur in other factors, not false positives, from the INM test.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF