• 제목/요약/키워드: Monitoring and Learning

검색결과 786건 처리시간 0.028초

반성적 수업 분석지를 활용한 교육실습에서 중등수학 예비교사의 교수행동 및 인식 변화 (Changes in Teaching Behaviors and Awareness of Pre-service Mathematics Teachers by Using Survey on Self-reflection during Education Practices)

  • 권종겸
    • 한국수학사학회지
    • /
    • 제27권5호
    • /
    • pp.365-384
    • /
    • 2014
  • The purpose of this study is to assess the changes that occur to pre-service mathematics teachers by using survey on the self-reflection during their education practices. For four weeks of the education practice period, the changes to pre-service teachers are analyzed from teaching and learning perspectives. The teaching perspective is sub-categorized into lesson contents, teaching methods, and evaluation on teaching, and the learning perspective is sub-categorized into monitoring on learning, support for learning and evaluation on learning. The analysis shows that significant changes occur in teaching contents from the teaching perspective and in all the sub-categories from the learning perspective. Based on the analysis, preservice teachers are suggested to utilize self-reflection programs during their education practices to promote their professionalism in teaching.

Deep-learning based In-situ Monitoring and Prediction System for the Organic Light Emitting Diode

  • Park, Il-Hoo;Cho, Hyeran;Kim, Gyu-Tae
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.126-129
    • /
    • 2020
  • We introduce a lifetime assessment technique using deep learning algorithm with complex electrical parameters such as resistivity, permittivity, impedance parameters as integrated indicators for predicting the degradation of the organic molecules. The evaluation system consists of fully automated in-situ measurement system and multiple layer perceptron learning system with five hidden layers and 1011 perceptra in each layer. Prediction accuracies are calculated and compared depending on the physical feature, learning hyperparameters. 62.5% of full time-series data are used for training and its prediction accuracy is estimated as r-square value of 0.99. Remaining 37.5% of the data are used for testing with prediction accuracy of 0.95. With k-fold cross-validation, the stability to the instantaneous changes in the measured data is also improved.

신경망 회로를 이용한 연삭가공의 트러블 검지(II) (Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report))

  • 곽재섭;김건희;하만경;송지복;김희술
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

A Machine Learning-Driven Approach for Wildfire Detection Using Hybrid-Sentinel Data: A Case Study of the 2022 Uljin Wildfire, South Korea

  • Linh Nguyen Van;Min Ho Yeon;Jin Hyeong Lee;Gi Ha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.175-175
    • /
    • 2023
  • Detection and monitoring of wildfires are essential for limiting their harmful effects on ecosystems, human lives, and property. In this research, we propose a novel method running in the Google Earth Engine platform for identifying and characterizing burnt regions using a hybrid of Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (multispectral photography) images. The 2022 Uljin wildfire, the severest event in South Korean history, is the primary area of our investigation. Given its documented success in remote sensing and land cover categorization applications, we select the Random Forest (RF) method as our primary classifier. Next, we evaluate the performance of our model using multiple accuracy measures, including overall accuracy (OA), Kappa coefficient, and area under the curve (AUC). The proposed method shows the accuracy and resilience of wildfire identification compared to traditional methods that depend on survey data. These results have significant implications for the development of efficient and dependable wildfire monitoring systems and add to our knowledge of how machine learning and remote sensing-based approaches may be combined to improve environmental monitoring and management applications.

  • PDF

Applying and Evaluating Visualization Design Guidelines for a MOOC Dashboard to Facilitate Self-Regulated Learning Based on Learning Analytics

  • Cha, Hyun-Jin;Park, Taejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2799-2823
    • /
    • 2019
  • With the help of learning analytics, MOOCs have wider potential to succeed in learning through promoting self-regulated learning (SRL). The current study aims to apply and validate visualization design guidelines for a MOOC dashboard to enhance such SRL capabilities based on learning analytics. To achieve the research objective, a MOOC dashboard prototype, LM-Dashboard, was designed and developed, reflecting the visualization design guidelines to promote SRL. Then, both expert and learner participants evaluated LM-Dashboard through iterations to validate the visualization design guidelines and perceived SRL effectiveness. The results of expert and learner evaluations indicated that most of the visualization design guidelines on LM-Dashboard were valid and some perceived SRL aspects such as monitoring a student's learning progress and assessing their achievements with time management were beneficial. However, some features on LM-Dashboard should be improved to enhance SRL aspects related to achieving their learning goals with persistence. The findings suggest that it is necessary to offer appropriate feedback or tips as well as to visualize learner behaviors and activities in an intuitive and efficient way for the successful cycle of SRL. Consequently, this study contributes to establishing a basis for the visual design of a MOOC dashboard for optimizing each learner's SRL.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • 제6권2호
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

재난기술·정보 공유를 위한 글로벌체계 플랫폼 개발 (Developing a Platform of Platform for Disaster Technology and Information Sharing)

  • 이영재
    • 한국방재안전학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2012
  • 기후변화적응과 재해위험경감 관련 정보 및 기술을 공유하기 위한 글로벌 체계 구축이 연구목적이다. 체계는 아시아태평양국가들의 성과를 모니터링 하는 플랫폼, 예방및경감 기술들을 공유하기 위한 플랫폼, 이러닝 교육 플랫폼과 재해위험경감 주제 관련 정보 제공 플랫폼으로 구성된다. 아울러 플랫폼은 한국 전자정부 표준 기본구조를 채택하여 개발된다.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

항공사 기단의 상태변화 시각화에 관한 연구 (A Study on the Visualization of an Airline's Fleet State Variation)

  • 이용화;이주환;이금진
    • 한국항공운항학회지
    • /
    • 제29권2호
    • /
    • pp.84-93
    • /
    • 2021
  • Airline schedule is the most basic data for flight operations and has significant importance to an airline's management. It is crucial to know the airline's current schedule status in order to effectively manage the company and to be prepared for abnormal situations. In this study, machine learning techniques were applied to actual schedule data to examine the possibility of whether the airline's fleet state could be artificially learned without prior information. Given that the schedule is in categorical form, One Hot Encoding was applied and t-SNE was used to reduce the dimension of the data and visualize them to gain insights into the airline's overall fleet status. Interesting results were discovered from the experiments where the initial findings are expected to contribute to the fields of airline schedule health monitoring, anomaly detection, and disruption management.

굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발 (Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device)

  • 백희승;신종호;김성준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.