• Title/Summary/Keyword: Monitoring and Feedback System

Search Result 143, Processing Time 0.035 seconds

Development of Integrated Variable Sampling Interval EngineeringProcess Control & Statistical Process Control System (가변 샘플링간격 EPC/SPC 결합시스템의 개발)

  • Lee, Sung-Jae;Seo, Sun-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.210-218
    • /
    • 2006
  • Traditional statistical process control (SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control (EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted by variable sampling interval (VSI) to change sampling intervals in a predetermined fashion on the predicted process levels under integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA (1,1) disturbance model and zero-order (responsive) dynamic system. Properties of twelve control rules under three patterns of process change (sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.

Development of automatic flow control system for the practice of Ziegler-Nichols and Cohen-Coon control theory (Ziegler-Nichols와 Cohen-Coon 제어 이론의 실습을 위한 자동 유량제어 시스템의 구축)

  • Kang, Tae-Won;Lee, Ho-Gyun
    • Journal of Engineering Education Research
    • /
    • v.20 no.4
    • /
    • pp.61-66
    • /
    • 2017
  • Automatic flow control system composed by hardware and software was designed and fabricated to be used as teaching tool of feedback control theory in university experimental class. This system includes hardwares like data acquisition board, flow measuring device, transmitters, and the pneumatic valve, and software like LabView program for the monitoring and control of flow rates. The system was designed as the student can see the control effect of not only set point but also disturbance changes. Also the LabView program was composed for the calculation of controller parameters of both Ziegler-Nichols and Cohen-Coon tuning. The students can apply both tuning constants and compare the control performances. This system will provide the easy way for the students to understand the function and specification of control hardwares, and to raise the programing ability of control software.

The Wireless Monitoring System of Respiration Signal (호흡신호 무선 통신 시스템 개발)

  • Son, Byoung-Hee;Jang, Jong-Chan;Yang, Hyo-Sik;Cha, Eun-Jong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • This study is about implementing wireless transferring system in pre-hospital cardiopulmonary resuscitation(CPR). Also, this study includes monitoring based feedback between patient and hospital to increase the survival rate of emergency patient by developing the performance of cardiopulmonary resuscitation in pre-hospital. It minimizes the loss of flow rate or gastric inflation through the space between the airway and the esophagus, which enables the inspiration-expiration rate to be measured more precisely. Due to these reasons this study applied ET insertion based respiratory sensor to measure flow rate. The main indices of artificial ventilation are justified from minute respiration(V), end-tidal $CO_2(E_TCO_2)$, and tracheal pressure($P_{tr}$). The simulation is performed to verify the bandwidth and delay time of transport network for in-hospital monitoring even as transporting images and voice information simultaneously. The total bandwidth is 815 kbps, and WLAN (IEEE 802.11x) is used as communication protocol. The network load is under 1.5% and the transmit delay time is measured under 0.3 seconds.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

A Study on the Community Planning Model Using for System Dynamics (시스템 다이내믹스를 활용한 마을만들기 모형구축 연구)

  • Yang, Won-Mo;Jang, June-Ho;Yeo, Kwan-Hyun
    • Korean System Dynamics Review
    • /
    • v.14 no.3
    • /
    • pp.75-103
    • /
    • 2013
  • The purpose of this study is to use system dynamics to establish the relation among each variable through the construction process of Community Planning Model, and examine what changes policy scenarios per alternative cause in Community Planning through policy simulation of the constructed model. Therefore, this study extracted chief variables of Community Planning Projects through precedent researches related to Community Planning, and extracted variables were prepared as causal map to examine in what causal cycle feedback structure within Community Planning they can be explained. Next, Community Planning Model was constructed based on the prepared causal map. The model was verified by specialists' interviews and simulation of example areas. This study, which aimed to construct Community Planning Model using system dynamics, has a significance in that it prepared the foundation to provide useful methodology in monitoring the progress of project or establishing the plan of future Community Planning Projects.

  • PDF

A Study on the Development of Topic Map for Analysis of Customer Satisfaction in Tourism Industry (관광산업의 고객만족도 분석을 위한 토픽맵 개발에 관한 연구)

  • Kang, Min Shik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.249-255
    • /
    • 2017
  • The domestic tourism industry mostly relies on quantitative surveys for customer satisfaction. However, customer participation of the questionnaires is extremely low and the improvement of the dissatisfactory factors is not being performed promptly. In this paper, we propose a new topic map system and prove its empirical effectiveness to improve the accuracy of customer feedback information and the efficiency of the analysis process. The topic map system is a system for analyzing large amounts of customer feedback data in real time. It uses text mining and ontology techniques by integrating data collected over a certain period from real-time SNS and quantitative data obtained from existing survey systems. The effect after improving the analyzed factors of dissatisfaction is also a new and innovative evaluation system for monitoring customer satisfaction in real time. The classification based on this integrated data is a classification system that is specific to the product or the customer. According to this classification, it is possible to measure the effect of the recognition and improvement of the complaint factor in real time on the topic map system. This provides a sophisticated prioritization of the improvement factors and enables customer satisfaction quality control as a PDCA feedback system. In addition, the survey period and costs are greatly shortened, and responses can be more precise to the existing survey method. As a practical application, this system is applied to the largest H travel agency in Korea to prove the accuracy and efficiency of the proposed system.

Design Methodology of Networked Control System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 네트워크 제어시스템 설계)

  • Jung, Joon-Hong;Choi, Soo-Young;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2328-2330
    • /
    • 2003
  • This paper presents a new design methodology of networked control system using CAN(Controller Area Network). Feedback control systems having control loops closed through a network are called networked control systems. We design CAN nodes which can transmit control and monitoring data through network bus and apply these to networked control system design. We analyze the variation of stability property according to network-induced delay and determine a proper sampling period of networked control system that preserves stability performance. The results of the experimental example validate effectiveness of our networked control system.

  • PDF

Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm (뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발)

  • Ki Yong Park;Gyu Ha Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.