• Title/Summary/Keyword: Monitoring and Controlling

Search Result 506, Processing Time 0.026 seconds

Investigation of Urban Environmental Quality Using an Integration of Satellite, Ground based measurement data over Seoul, Korea

  • Lee, Kwon-Ho;Wong, Man-Sing;Kim, Young-J.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.339-351
    • /
    • 2011
  • This study investigates the potentials of satellite, ground measurement data, and geo-spatial information within an urban area for the mapping of the Urban Environmental Quality (UEQ) parameters. The UEQ indicates a complex and various parameters resulting from both human and natural factors, which are greenness, climate, air pollution, the urban infrastructure, and etc. Multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air pollution by the Haze Optimized Transform (HOT) technique, Urban Heat Island (UHO using the emissivity-fusion method in Seoul from 2000 to 2006 in fine resolution (30m) were analyzed for the estimation of UEQ index. Although the UHI values are similar ($8.4^{\circ}C{\sim}9.1^{\circ}C$) during these years, the spatial coverage of "hot" surface temperature (> $24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84 (2002), and 0.89 (2006), respectively. It was found that the proposed method was successfully analyzed spatial structure of the UEQ and the scenarios of the best and worst areas within the city were also identified. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors (원격탐사를 이용한 한국 남해 중부해역에서의 적조 예찰 연구 II. 적조발생과 해양인자간의 상관성 연구)

  • 윤홍주;남광우;조한근;변혜경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.938-945
    • /
    • 2004
  • On the relationship between the red tide occurrence and the oceanographic factors in the middle coastal area in the South Sea of Korea, the favorable oceanographic conditions for the red tide formation are considered as follows; the calm weather increases sea water temperature in summer and early-fall which the red tide occurs frequently, and the heavy precipitation brings some riverine water to ween: low salinity, high suspended solid, low phosphorus and high nitrogen, respectively. We decided the potential areas in the coastal zones vulnerable to the red tide occurrence based on the limited factors controlling the growth of phytoplankton. By using GIS through the overlap for three subject figures (phosphorus, nitrogen and suspended solids), it was founded that the potential areas are the Yeosu∼Dolsan coast, the Gamak bay, the Namhae coast, the Narodo coast, the Goheung and Deukryang bay. This result has very well coincided to the results of the satellite and in-situ data.

Predict Solar Radiation According to Weather Report (일기예보를 이용한 일사량 예측기법개발)

  • Won, Jong-Min;Doe, Geun-Young;Heo, Na-Ri
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.387-392
    • /
    • 2011
  • The value of Photovoltaic as an independent power supply is small, but the city's carbon emissions reduction and for the reduction of fossil fuel use distributed power is the power source to a very high value. However, according to the weather conditions for solar power generation by power fluctuations because of the size distribution to be effective, the big swing for effectively controlling real-time monitoring should be made. But that depends on solar power generation solar radiation forecasts from the National Weather Service does not need to predict it, and this study, the diffuse sky radiation in the history of the solar radiation in the darkness of the clouds, thick and weather forecasts can be inferred from the atmospheric transmittance to announce this value is calculated to represent each weather forecast solar radiation and solar radiation predicted by substituting the expression And the measured solar radiation and CRM (Cloud Cover Radiation Model) technique with an expression of Kasten and Czeplak irradiation when compared to the calculated predictions were verified.

Design and Implementation of OPC-Based Intelligent Precision Servo Control Power Forming Press System (OPC 기반의 지능형 정밀 서보제어 분말성형 프레스 시스템의 설계 및 구현)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1243-1248
    • /
    • 2018
  • Metal Powder Metallurgy is a manufacturing technology that makes unique model parts or a certain type of product by using a hardening phenomenon when a powder of metal or metal oxide is put it into a mold and compression-molded by a press and then heated and sintered at a high temperature. Powder metallurgical press equipment is mainly used to make the parts of automobile, electronic parts and so on, and most of them are manufactured using precise servo motor. The intelligent precision servo control powder molding press system which is designed and implemented in this paper has advantages of lowering the price and maintaining the precision by using the mechanical camshaft for the upper ram part and precisely controlling the lower ram part using the high precision servo system. In addition, OPC-based monitoring and process data collection systems are designed and implemented to provide scalability that can be applied to smart manufacturing management systems that utilize Big Data in the future.

Medical Staff's Awareness of Infected Patient Transfer Robots: Using SERVQUAL and AHP (감염환자 이송 로봇에 대한 의료종사자의 인식: SERVQUAL과 AHP를 활용하여)

  • Choi, Hyunchul;Seo, Seul-Ki;Kwon, Jae-Yong;Park, Sangchan;Chang, Hyejung
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.381-401
    • /
    • 2023
  • Purpose: The purpose of this study was to understand the perception of medical staff to propose an infected patient transport robot as a means of responding to infectious diseases. Methods: The data collected through the survey was analyzed through AHP analysis. The measurement tools used in this study were derived through the SERVQUAL model and Focus Group Interview(FGI), and consisted of four detailed questions for each of five classes: tangible, reliability, responsiveness, assurance, and empathy. Results: As a result of the study, there are concerns about risk factors that may occur in areas where medical staff intervention is minimized. Above all, we confirmed the consensus that safety should be the top priority during the process of robots to transport patients. In particular, highlighted were the resolution of device errors that may occur during the process for transporting patients and easy provision of the first aid. Additionally, the ability to monitor patients and suppress infection factors turned out to be important, which was directly related to the simplification of the role of medical staff and work efficiency. Conclusion: As one of the means of effectively controlling infectious diseases in a pandemic situation, a robot to transport the infected patient was considered. However, in order to commercialize this, specific verification of the safety of medical staff and patients is needed, and empirical data on providing the first aid, patient monitoring, and infection factor suppression should be presented.

Impacts of Chemical Heterogeneities in Landfill Subsurface Formations on the Transport of Leachate (매립지반의 화학적 불균질성이 침출수 이동에 미치는 영향)

  • Lee Kun-Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this study is to assess impacts of sorption heterogeneity on the transport of leachate leaked from unlined landfill sites and is accomplished by examining the results from a series of Monte-Carlo simulations. For random distribution coefficient ($K_{d}$) fields with four different levels of heterogeneity ranging from homogeneous to highly heterogeneous, the transport of leachate was investigated by linking a saturated flow model with a contaminant transport model. Impacts of a chemical heterogeneity were evaluated using point statistics values such as mean, standard deviation, and coefficient of variation of the concentration obtained at monitoring wells from 100 Monte-Carlo trials. Inspection of point statistics shows that the distribution of distribution coefficient in the landfill site proves to be an important parameter in controlling leachate concentrations. In comparison to homogeneous sorption, heterogeneous $K_{d^-}$ fields produce the variability in the leachate concentration for different realizations. The variability increases significantly as the variance in the $K_{d^-}$ field and the travel time between source and monitoring well increase. These outcomes indicate that use of a constant homogeneous $K_{d}$ value for predicting the transport of leachate can result in significant error, especially when variability in $K_{d}$ is high.

A Study for Space-based Energy Management System to Minimizing Power Consumption in the Big Data Environments (소비전력 최소화를 위한 빅데이터 환경에서의 공간기반 에너지 관리 시스템에 관한 연구)

  • Lee, Yong-Soo;Heo, Jun;Choi, Yong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.229-235
    • /
    • 2013
  • This paper proposed the method to reduce and manage the amount of using power by using the Self-Learning of inference engine that evolves through learning increasingly smart ways for each spaces with in the Space-Based Energy Management System (SEMS, Space-based Energy Management System) that is defined as smallest unit space with constant size and similar characteristics by using the collectible Big Data from the various information networks and the informations of various sensors from the existing Energy Management System(EMS), mostly including such as the Energy Management Systems for the Factory (FEMS, Factory Energy Management System), the Energy Management Systems for Buildings (BEMS, Building Energy Management System), and Energy Management Systems for Residential (HEMS, Home Energy Management System), that is monitoring and controlling the power of systems through various sensors and administrators by measuring the temperature and illumination.

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Improving and Validating a Greenhouse Tomato Model "GreenTom" for Simulating Artificial Defoliation (적엽작업을 반영하기 위한 시설토마토 생육모형(GreenTom) 개선 및 검증)

  • Kim, Yean-Uk;Kim, Jin Hyun;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.373-379
    • /
    • 2019
  • Smart-farm has been spreading across Korea to improve the labor efficiency and productivity of greenhouse crops. Although notable improvements have been made in the monitoring technologies and environmental-controlling systems in greenhouses, only a few simple decision-support systems are available for predicting the optimum environmental conditions for crop growth. In this study, a tomato growth model (GreenTom), which was developed by Seoul National University in 1997, was calibrated and validated to examine if the model can be used as a decision-supporting system. The original GreenTom model was not able to simulate artificial defoliation, which resulted in overestimation of the leaf area index in the late growth. Thus, an algorithm for simulating the artificial defoliation was developed and added to the original model. The node development, leaf growth, stem growth, fruit growth, and leaf area index were generally well simulated by the modified model indicating that the model could be used effectively in the decision-making of smart greenhouse.