• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.034 seconds

Multi-Robot Path Planning for Environmental Exploration/Monitoring (미지 환경 탐색 및 감시를 위한 다개체 로봇의 경로계획)

  • Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2012
  • This paper presents a multi-robot path planner for environment exploration and monitoring. Robotics systems are being widely used as data measurement tools, especially in dangerous environment. For large scale environment monitoring, multiple robots are required in order to save time. The path planner should not only consider the collision avoidance but efficient coordination of robots for optimal measurements. Nonlinear spring force based planning algorithm is integrated with the spatial gradient following path planner. Perturbation/Correlation based estimation of spatial gradient is applied. An algorithm of tuning the stiffness for robot coordination is presented. The performance of the proposed algorithm is discussed with simulation results.

Load Profile Disaggregation Method for Home Appliances Using Active Power Consumption

  • Park, Herie
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.572-580
    • /
    • 2013
  • Power metering and monitoring system is a basic element of Smart Grid technology. This paper proposes a new Non-Intrusive Load Monitoring (NILM) method for a residential buildings sector using the measured total active power consumption. Home electrical appliances are classified by ON/OFF state models, Multi-state models, and Composite models according to their operational characteristics observed by experiments. In order to disaggregate the operation and the power consumption of each model, an algorithm which includes a switching function, a truth table matrix, and a matching process is presented. Typical profiles of each appliances and disaggregation results are shown and classified. To improve the accuracy, a Time Lagging (TL) algorithm and a Permanent-On model (PO) algorithm are additionally proposed. The method is validated as comparing the simulation results to the experimental ones with high accuracy.

Implementation of an Integrated Machine Condition Monitoring Algorithm Based on an Expert System (전문가시스템을 기반으로 한 통합기계상태진단 알고리즘의 구현(I))

  • 장래혁;윤의성;공호성;최동훈
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Abstract - An integrated condition monitoring algorithm based on an expert system was implemented in this work in order to monitor effectively the machine conditions. The knowledge base was consisted of numeric data which meant the posterior probability of each measurement parameter for the representative machine failures. Also the inference engine was constructed as a series of statistical process, where the probable machine fault was inferred by a mapping technology of pattern recognition. The proposed algorithm was, through the user interface, applied for an air compressor system where the temperature, vibration and wear properties were measured simultaneously. The result of the case study was found fairly satisfactory in the diagnosis of the machine condition since the predicted result was well correlated to the machine fault occurred.

Emergency Monitoring System Based on a Newly-Developed Fall Detection Algorithm

  • Yi, Yun Jae;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • An emergency monitoring system for the elderly, which uses acceleration data measured with an accelerometer, angular velocity data measured with a gyroscope, and heart rate measured with an electrocardiogram, is proposed. The proposed fall detection algorithm uses multiple parameter combinations in which all parameters, calculated using tri-axial accelerations and bi-axial angular velocities, are above a certain threshold within a time period. Further, we propose an emergency detection algorithm that monitors the movements of the fallen elderly person, after a fall is detected. The results show that the proposed algorithms can distinguish various types of falls from activities of daily living with 100% sensitivity and 98.75% specificity. In addition, when falls are detected, the emergency detection rate is 100%. This suggests that the presented fall and emergency detection method provides an effective automatic fall detection and emergency alarm system. The proposed algorithms are simple enough to be implemented into an embedded system such as 8051-based microcontroller with 128 kbyte ROM.

Forest Fire Monitoring System Using Remote Sensing Data

  • Hwangbo, Ju-Won;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.747-749
    • /
    • 2003
  • For forest fire monitoring in relatively cool area like Siberia, design of Decision Support System (DSS) is proposed. The DSS is consisted of three different algorithms to detect potential fires from NOAA AVHRR image. The algorithm developed by CCRS (Canada Center for Remote Sensing) uses fixed thresholds for multi-channel information like one by ESA (European Space Agency). The algorithm of IGBP (International Geosphere Biosphere Program) involves contextual information in deriving fire pixels. CCRS and IGBP algorithms are rather liberal compared to more conservative ESA algorithm. Fire pixel information from the three algorithms is presented to the user. The user considers all these information in making decision about the location fire takes place.

  • PDF

A structural health monitoring system based on multifractal detrended cross-correlation analysis

  • Lin, Tzu-Kang;Chien, Yi-Hsiu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.751-760
    • /
    • 2017
  • In recent years, multifractal-based analysis methods have been widely applied in engineering. Among these methods, multifractal detrended cross-correlation analysis (MFDXA), a branch of fractal analysis, has been successfully applied in the fields of finance and biomedicine. For its great potential in reflecting the subtle characteristic among signals, a structural health monitoring (SHM) system based on MFDXA is proposed. In this system, damage assessment is conducted by exploiting the concept of multifractal theory to quantify the complexity of the vibration signal measured from a structure. According to the proposed algorithm, the damage condition is first distinguished by multifractal detrended fluctuation analysis. Subsequently, the relationship between the q-order, q-order detrended covariance, and length of segment is further explored. The dissimilarity between damaged and undamaged cases is visualized on contour diagrams, and the damage location can thus be detected using signals measured from different floors. Moreover, a damage index is proposed to efficiently enhance the SHM process. A seven-story benchmark structure, located at the National Center for Research on Earthquake Engineering (NCREE), was employed for an experimental verification to demonstrate the performance of the proposed SHM algorithm. According to the results, the damage condition and orientation could be correctly identified using the MFDXA algorithm and the proposed damage index. Since only the ambient vibration signal is required along with a set of initial reference measurements, the proposed SHM system can provide a lower cost, efficient, and reliable monitoring process.

A hybrid structural health monitoring technique for detection of subtle structural damage

  • Krishansamy, Lakshmi;Arumulla, Rama Mohan Rao
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.587-609
    • /
    • 2018
  • There is greater significance in identifying the incipient damages in structures at the time of their initiation as timely rectification of these minor incipient cracks can save huge maintenance cost. However, the change in the global dynamic characteristics of a structure due to these subtle damages are insignificant enough to detect using the majority of the current damage diagnostic techniques. Keeping this in view, we propose a hybrid damage diagnostic technique for detection of minor incipient damages in the structures. In the proposed automated hybrid algorithm, the raw dynamic signatures obtained from the structure are decomposed to uni-modal signals and the dynamic signature are reconstructed by identifying and combining only the uni-modal signals altered by the minor incipient damage. We use these reconstructed signals for damage diagnostics using ARMAX model. Numerical simulation studies are carried out to investigate and evaluate the proposed hybrid damage diagnostic algorithm and their capability in identifying minor/incipient damage with noisy measurements. Finally, experimental studies on a beam are also presented to compliment the numerical simulations in order to demonstrate the practical application of the proposed algorithm.

Coverage Maximization in Environment Monitoring using Mobile Sensor Nodes (이동센서노드를 이용한 환경감시 시스템에서의 커버리지 최대화)

  • Van Le, Duc;Yoon, Seokhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.116-119
    • /
    • 2015
  • In this paper we propose an algorithm for environment monitoring using multiple mobile sensor (MS) nodes. Our focus is on maximizing sensing coverage of a group of MS nodes for monitoring a phenomenon in an unknown and open area over time. In the proposed algorithm, MS nodes are iteratively relocated to new positions at which a higher sensing coverage can be obtained. We formulated an integer linear programming (ILP) optimization problem to find the optimal positions for MS nodes with the objective of coverage maximization. The performance evaluation was performed to confirm that the proposed algorithm can enable MS nodes to relocate to high interest positions, and obtain a maximum sensing coverage.

  • PDF

The Monitoring System of Photovoltaic Module using Fault Diagnosis Sensor (태양전지 모듈 고장진단센서를 이용한 모니터링 시스템)

  • Park, Yuna;Kang, Gihwan;Ju, Youngchul;Kim, Soohyun;Ko, Sukwhan;Jang, Gilsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.91-100
    • /
    • 2016
  • This paper proposes the PV module fault diagnosis sensor which is applied to Zigbee wireless network, and monitoring system using the developed sensor. It is designed with embedded sensor in junction box. The diagnosis elements for algorithm were voltage and temperature. For that reason, It is able to reduce the price and separate the fault of bypass diode from shading differently from other monitoring systems. This fault diagnosis algorithm verified through the Field-installed operations of PV module.