• 제목/요약/키워드: Monitoring Tasks

검색결과 272건 처리시간 0.03초

A visual identification key to Orchidaceae of Korea

  • Seo, Seon-Won;Oh, Sang-Hun
    • 식물분류학회지
    • /
    • 제47권2호
    • /
    • pp.124-131
    • /
    • 2017
  • Species identification is a fundamental and routine process in plant systematics, and linguistic-based dichotomous keys are widely used in the identification process. Recently, novel tools for species identification have been developed to improve the accuracy, ease to use, and accessibility related to these tasks for a broad range of users given the advances in information and communications technology. A visual identification key is such an approach, in which couplets consist of images of plants or a part of a plant instead of botanical terminology. We developed a visual identification key for 101 taxa of Orchidaceae in Korea and evaluated its performance. It uses short statements for image couplets to avoid misinterpretations by users. The key at the initial steps (couplets) uses relatively easy characters that can be determined with the naked eye. The final steps of the visual key provide images of species and information about distributions and flowering times to determine the species that best fit the available information. The number of steps required to identify a species varies, ranging from three to ten with an average of 4.5. A performance test with senior college students showed that species were accurately identified using the visual key at a rate significantly higher than when using a linguistic-based dichotomous key and a color manual. The findings presented here suggest that the proposed visual identification key is a useful tool for the teaching of biodiversity at schools, for the monitoring of ecosystems by citizens, and in other areas that require rapid, easy, and accurate identifications of species.

체온측정용 온도 센서 및 모니터링 텔레메트리 시스템 구현 (Development for body temperature sensor and monitoring telemetry system)

  • 이정현;성기웅;김명남;조진호
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.435-442
    • /
    • 2010
  • Typically, the vital signs that are representing the state of human body, are the body temperature, sphygmus, respiration and blood pressure. The body temperature is the result of metabolic regulation and human steady-state body temperature is maintained from 35.9 to $37.4^{\circ}C$ by heat regulatory center. The body temperature is indicative of infection and especially it should be monitored to requiring intensive care patients or after surgical patients. But, measuring of body temperature to a heavy workload on nursing staff has been recognized. And, the health service of nurse is limited by simple tasks such as the measurement and record of vital sign. In this paper, the body temperature monitoring telemetry system was proposed to prove the recoding and transmission of body temperature patch system according the standard(ISO TS11073-92001). We proposed the transmission protocol to suit the MFER(medical waveform format encoding rules). The telemetry patch system was implemented and it was verified by experiments.

Study on cognitive load of OM interface and eye movement experiment for nuclear power system

  • Zhang, Jingling;Su, Daizhong;Zhuang, Yan;QIU, Furong
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.78-86
    • /
    • 2020
  • The operation and monitoring (OM) interface is the digital medium between nuclear power system and operators. The cognitive load of OM interface has an important effect on the operation errors made by operator during OM task between operator and computer. The cognitive load model of OM interface is constructed for analysing the composition and influencing factors of OM interface cognitive load. And to study the coping strategies and methods for cognitive load of nuclear power system. An experiment method based on eye movement is proposed to measure the cognitive load of OM interface. Experiment case is carried out with 20 subjects and typical OM interface of a nuclear power system simulator. The OM interface is optimized based on the experiment results. And the results comparison between the original OM interface and the optimized OM interface shows that the cognitive load model and proposed method is valuable contributions in reducing the cognitive load and improving the interaction efficiency of OM tasks.

공정 이상원인의 비선형 통계적 방법을 통한 진단 (Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach)

  • 조현우
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3779-3784
    • /
    • 2012
  • 산업체 공정의 실시간 공정 모니터링과 진단은 생산 제품의 품질과 안전을 보장하는데 반드시 필요한 활동들의 하나이다. 그중에서 공정 진단은 공정에 발생된 특정 이상상황의 원인을 밝혀내는 것으로서 조업자들이 이상상황의 근본원인을 보다 효과적으로 도출하는데 도움을 줄 수 있다. 본 논문에서는 비선형 KFDA 기법과 데이터 전처리기법을 이용한 이상원인 진단방법을 적용하고 이의 진단 성능을 기존 선형 기법에 기반한 PCA 진단방법과 비교한다. 실제 공정을 모사한 Tennessee Eastman 공정 시뮬레이터의 공정 데이터를 통한 사례연구를 수행한 결과 기존 선형 진단 방법론 대비 신뢰할 수 있는 진단 결과를 얻을 수 있었다.

디젤입자 채취를 위한 방법의 비교 (Occupational Exposure Monitoring for Diesel Particulate Matter Using Two Sampling Methods)

  • 이수길;게닉젠크비치;이내우
    • 한국안전학회지
    • /
    • 제35권6호
    • /
    • pp.9-14
    • /
    • 2020
  • This study was to compare the sampling efficiencies for monitoring of diesel particulate matter (DPM) using two different sampling methods; In-House PVC cyclone sampling heads and commercial airborne DPM (EC) sampling heads mounted on Dorr-Oliver cyclone heads. Personal exposure levels of DPM, analysed for elemental carbon (EC) were 0.004 - 0.2 mg/m3 for the loader drivers and 0.005 - 0.34 mg/m3 for the specialised mining vehicle (SMV) drivers were similar to previous study results. The highest result (0.34 mg/m3) might be from an irregular production schedule and multiple job tasks requested. The results using the two sampling heads were not significantly different and it is thought that the In-House PVC cyclone with 37 mm quartz filter could be used in place of the commercial sampler as a preliminary screen in place of using the commercial sampler.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.

A Low-Cost Approach for Path Programming of Terrestrial Drones on a Construction Site

  • Kim, Jeffrey;Craig, James
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.319-327
    • /
    • 2022
  • Robots for construction sites, although not deeply widespread, are finding applications in the duties of project monitoring, material movement, documentation, security, and simple repetitive construction-related tasks. A significant shortcoming in the use of robots is the complexity involved in programming and re-programming an automation routine. Robotic programming is not an expected skill set of the traditional construction industry professional. Therefore, this research seeks to deliver a low-cost approach toward re-programming that does not involve a programmer's skill set. The researchers in this study examined an approach toward programming a terrestrial-based drone so that it follows a taped path. By doing so, if an alternative path is required, programmers would not be needed to re-program any part of the automated routine. Changing the path of the drone simply requires removing the tape and placing a different path - ideally simplifying the process and quickly allowing practitioners to implement a new automated routine. Python programming scripts were used with a DJI Robomaster EP Core drone, and a terrain navigation assessment was conducted. The study examined the pass/fail rates for a series of trial run over different terrains. The analysis of this data along with video recording for each trial run allowed the researchers to conclude that the accuracy of the tape follow technique was predictable on each of the terrain surfaces. The accuracy and predictability inform a non-coding construction practitioner of the optimal placement of the taped path. This paper further presents limitations and suggestions for some possible extended research options for this study.

  • PDF

Vision-Based Identification of Personal Protective Equipment Wearing

  • Park, Man-Woo;Zhu, Zhenhua
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.313-316
    • /
    • 2015
  • Construction is one of the most dangerous job sectors, which reports tens of thousands of time-loss injuries and deaths every year. These disasters incur delays and additional costs to the projects. The safety management needs to be on the top primary tasks throughout the construction to avoid fatal accidents and to foster safe working environments. One of the safety regulations that are frequently violated is the wearing of personal protection equipment (PPE). In order to facilitate monitoring of the compliance of the PPE wearing regulations, this paper proposes a vision based method that automatically identifies whether workers wear hard hats and safety vests. The method involves three modules - human body detection, identification of safety vest wearing, and hard hat detection. First, human bodies are detected in the video frames captured by real-time on-site construction cameras. The detected human bodies are classified into with/without wearing safety vests based on the color features of their upper parts. Finally, hard hats are detected on the nearby regions of the detected human bodies and the locations of the detected hard hats and human bodies are correlated to reveal their corresponding matches. In this way, the proposed method provides any appearance of the workers without wearing hard hats or safety vests. The method has been tested on onsite videos and the results signify its potential to facilitate site safety monitoring.

  • PDF

공공 도로건설사업에서의 원격 현장모니터링 적용방안에 관한 연구 (Application Method of Remote Site Monitoring in Public Road Construction Projects)

  • 옥현;김성진
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6550-6557
    • /
    • 2013
  • 공공 도로건설사업은 국토교통부 소속기관 중 하나인 지방국토관리청에서 발주되며 각 건설현장은 공사관리관을 두어 관리하고 있다. 공사관리관은 다수의 공사현장을 수시로 방문하여 현장을 점검 감독함에 따라 현장까지 이동하는데 많은 시간과 비용이 소요됨으로 현장관리 업무의 효율화가 요구되고 있다. 이에 공사관리관의 업무효율성 제고를 위해 현장방문을 최소화하고, 원격지에서 공사 진척현황을 실시간으로 모니터링 할 수 있도록 현장모니터링 관리 체계의 도입이 필요하다. 본 연구에서는 공공 도로건설공사를 대상으로 웹카메라(Web camera)를 활용한 원격 현장모니터링시스템을 구축하였다. 또한 10개 건설현장을 선정하여 시범적용을 실시하고, 효과분석을 통해 적용성을 검증하였다. 적용성 검증 결과, 웹카메라를 활용한 원격 현장관리는 기존 현장관리 방식에 비해 약 35% 정도의 비용절감효과를 갖는 것으로 분석되었다. 마지막으로 현장모니터링 관리 체계의 적용을 위한 가이드라인 마련과 도입방안을 검토하고, 개선방안을 제시하였으며, 이를 통해 불필요한 현장방문을 최소화하고, 현장의 취약지점에 대한 위험요소를 사전에 차단하여 각종 재난 및 재해를 사전에 예방할 수 있도록 하였다. 아울러 안전사고 예방과 부실시공의 근절을 통한 시설물의 품질을 향상시키리라 기대된다.

스마트 센서 세트를 활용한 화학물질 상시모니터링 시스템의 작업현장 적용 결과 (The Results of the Application of a Real-time Chemical Exposure Monitoring System in a Workplace)

  • 김욱;류장진;정종득;박귀현;김기영;강진주;정기효;함승헌
    • 한국산업보건학회지
    • /
    • 제33권2호
    • /
    • pp.215-229
    • /
    • 2023
  • Objectives: To validate the effectiveness of a real-time chemical exposure monitoring system developed by KOSHA (Korea Occupational Safety and Health Agency), we applied the system to a workplace in the electronics industry for 153 days. Methods: The monitoring system consisted of a PID chemical sensor, a LTE communication equipment, and a web-based platform. To monitor chemical exposure, four sets of sensors were placed in two manufacturing tasks - inspection and jig cleaning - which used TCE as a degreasing agent. We reviewed previous reports of work environment measurements and conducted a new work environment measurement on one day during the period. The PID sensor systems detected the chemical exposure levels in the workplace every second and transmitted it to the platform. Daily average and maximum chemical exposure levels were also recorded. Results: We compared the results from the real-time monitoring system and the work environment measurement by traditional methods. Generally, the data from the real-time monitoring system showed a higher level because the sensors were closer to the chemical source. We found that 28% of jig cleaning task data exceeded the STEL. Peak exposure levels of sensor data were useful for understanding the characteristics of the task's chemical use. Limitations and implications were reviewed for the adoption of the system for preventing poisoning caused by chemical substances. Conclusions: We found that the real-time chemical exposure monitoring system was an efficient tool for preventing occupational diseases caused by chemical exposure, such as acute poisoning. Further research is needed to improve the reliability and applicability of the system. We also believe that forming a social consensus around the system is essential.