• Title/Summary/Keyword: Monitoring Interval

Search Result 364, Processing Time 0.022 seconds

A Dual Mode Buffer Cache Management Policy for a Continuous Media Server (연속 미디어 서버를 위한 이중 모드 버퍼 캐쉬 관리 기법)

  • Seo, Won-Il;Park, Yong-Woon;Chung, Ki-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3642-3651
    • /
    • 1999
  • In this paper, we propose a new caching scheme for continuous media data where the buffer allocation unit is divided into two modes : interval and object. All of objects' access patterns are monitored and based on the results of monitoring, a request for an object is decided to cache its data with either interval mode or object mode. The results of our simulation show that our proposed caching scheme is better than the existing caching algorithms such as interval caching where the access patterns of the objects are changed with time.

  • PDF

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

The R-R interval detection system for ECG analysis (ECG 분석을 위한 R-R interval 탐지 시스템)

  • Kim, Young-Seop;Hong, Sung-Ho;Chi, Yong-Seok;Lee, Myeong-Seok;Noh, Hack-Youp
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-33
    • /
    • 2012
  • ECG widely used in cardiac function test is a graph that is recorded by measuring the electrical impulses occurred in the heart. Normal ECG has the form of similar sections that are repeated, and each section has the information occurred in a heart beat. Thus, In order to make the correct diagnosis, correct grasp of the sections and formed analysis must be done. In this research, a system that detects the sections of ECG is proposed. The system is based on ECG stored in the form of files. The ECG can easily have a noise caused by an outside factor. The noise of ECG is easily caused by external factors. Through a band-pass filter, it can be removed. and then, to get this ECG without a noise, interval detection algorithm using R-peak is applied. The clean, intuitive interface will help the above functions to be used without any difficulties.

  • PDF

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

Multivariate Shewhart control charts with variable sampling intervals (가변추출간격을 갖는 다변량 슈하르트 관리도)

  • Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.999-1008
    • /
    • 2010
  • The objective of this paper is to develop variable sampling interval multivariate control charts that can offer significant performance improvements compared to standard fixed sampling rate multivariate control charts. Most research on multivariate control charts has concentrated on the problem of monitoring the process mean, but here we consider the problem of simultaneously monitoring both the mean and variability of the process.

Comments on : An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시하의 기대손실모형에 대한 소고)

  • Yun, Won Young;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.321-324
    • /
    • 2014
  • Kwon et al. (2013) studied the optimal monitoring interval of systems with finite life cycle. It is assumed that there are several failure modes from several failure causes and the occurrence of causes follows a homogeneous Poisson process. The total expected cost is used as an optimization criterion. In this article, we derive newly the total expected cost under the same assumptions and consider some extended models.

Study on Remote Monitoring System for manned island electrification in Korea (하화도 태양광발전시스템의 원격측정 시스템 연구)

  • Lee, Man-Geun;Jung, Myung-Woong;Kim, Bu-Ho
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.7-14
    • /
    • 1996
  • Korean goverment is promoting "the Rural Electrification Project" to replace the diesel generators with PV power supply. The PV-diesel hybrid system are proven more cost effective than that of the existing, especially in the. case of small islands(less than 70 households). In this paper, we intend to introduce the Hahwado island PV system assisted with diesel generator and remote monitoring systems as observator. The purpose of this observator is to have minimum maintenance, to improve economical effciency and system reliability by checking the system periodically at certain time interval, and to make diagnosis of its operating situations. The remote monitoring system was designed to communicate between the central and local site through exclusive telephone line on real-time base, using Window '95 version.

  • PDF

A DSP System for On-line Monitoring in Laser Welding Using a IR and UV Sensors (IR 및 UV센서를 이용한 레이저 용접시의 실시간 모니터링 DSP 시스템)

  • Yoon Choong-Sup
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.53-58
    • /
    • 2005
  • We designed a weld monitoring system with UV and IR sensors using a embedded DSP controller for implementing a distribution system; running stand alone and communication with outside by industrial standard protocols. Also this system provided a USB port in order to be acquiring data in PC. The user interface program in PC visualized the IR and W data in time, frequency and state space. A correlation of IR and UV signals showed closely related to weld quality. A rapid change of geometry can be found through a moving average filter. And the average value of IR signal at an interval represented a welding width and depth. Through these results, we proposed a monitoring algorithm for a integer type DSP.