• Title/Summary/Keyword: Monitor chamber

Search Result 79, Processing Time 0.034 seconds

Implementation of Integration Control System Based on Smart for Moving Welfare Medical Device Disinfection (이동식 복지용구 소독을 위한 스마트 기반의 통합제어시스템 구현)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2251-2258
    • /
    • 2014
  • In this paper, an integrated control system for removable welfare equipment disinfection is implemented. The integrated control system consisted of a hydrogen peroxide vapor supply control circuit, a sterilization chamber control circuit using low vacuum, and a washing control circuit using microbubble. A Smart-phone based remote control and monitoring system is implemented to monitor the operating status and communication status for the integrated control system. An experiment is set up to evaluate the performance of the integrated control system. The experiment result confirms that signal and operation status can transmit and receive within the control circuit. The integrated control system shows good performance in terms of sensor interface, communication state and control. In future research, the proposed control system should deploy to an actual system for trial test to prove its performance.

A Study on Characteristics of A Diode Radiation Sensor for Portal Image of Therapy Radiation (치료방사선 Portal Image를 위한 다이오드 방사선 센서의 특성에 관한 연구)

  • Lee, Dong-Hun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.11-20
    • /
    • 1996
  • In this paper, the characteristics of therapy radiation diode sensors have been studied by using therapy radiation from the MM22 microtron accelerator. The linearity, reproducibility and error ratio were measured for feasibility as a radiation detector. Energy dependence, sensitivity change after a amount of irradiation and output value according to a number of diodes were also measured for same purpose. We have formed pulse shaping of diode signal with nuclear instruments for portal image reconstruction. The percent depth dose ratio according to field size and depth was compared with that of the detector of a ion chamber. Using thirteen silicon diodes, we can directly read diode outputs on a computer monitor after A/D conversion with 16 channels analog to digital conversion board with 12 bit resolution. The possibility for portal image with diodes has been suggested from output comparison between output value with a human phantom and that without a human phantom.

  • PDF

Development of Gas Sensor Modules and Sensor Calibration Systems (가스 센서모듈 및 센서보정시스템 개발)

  • Park, Cheol-Young;Lim, Byung-Hun;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • Sensor is a key element in various fields of applications such as sensor networks. However, they could not be easily developed because of several factors such as temperature dependence of output characteristics and/or nonlinearity. Calibration of sensor is also needed to solve these problems. Conventional calibration process required a lot of time and expenses. Therefore, it is important to develop sensor systems which can shorten development time and minimize expense. In this paper, we develop CO and $CO_2$ Sensor modules and propose a multiple sensor calibration system to resolve problems of conventional calibration process. A proposed system is composed of sensor module, system board and monitor program. Regression analysis method based on the least mean squares is used for calibration. We introduced the structure of calibration systems and experimental results. Calibration results can be used to confirm the effectiveness of the proposed system.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.

Dose Distribution and Design of Dynamic Wedge Filter for 3D Conformal Radiotherapy (방사선 입체조형치료를 위한 동적쐐기여과판의 고안과 조직내 선량분포 특성)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 1998
  • Wedge shaped isodoses are desired in a number of clinical situations. Hard wedge filters have provided nominal angled isodoses with dosimetric consequences of beam hardening, increased peripheral dosing, nonidealized gradients at deep depths along with the practical consequendes of filter handling and placement problems. Dynamic wedging uses a combination of a moving collimator and changing monitor dose to achieve angled isodoses. The segmented treatment tables(STT) that monitor unit setting by every distance of moving collimator, was induced by numerical formular. The characteristics of dynamic wedge by STT compared with real dosimetry. Methods and Materials : The accelerator CLINAC 2100C/D at Yonsei Cancer Center has two photon energies (6MV and 10MV), currently with dynamic wedge angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$. The segmented treatment tables(STT) that drive the collimator in concert with a changing monitor unit are unique for field sizes ranging from 4.0cm to 20.0cm in 0.5cm steps. Transmission wedge factors were measured for each STT with an standard ion chamber. Isodose profiles, isodose curves, percentage depth dose for dynamic wedge filters were measured with film dosimetry. Dynamic wedge angle by STT was well coincident with film dosimetry. Percent depth doses were found to be closer to open field but more shallow than hard wedge filter. The wedge transmission factor were decreased by increased the wedge angle and more higher than hard wedge filters. Dynamic wedging probided more consistent gradients across the field compared with hard wedge filters. Dynamic wedging has practical and dosimetric advantages over hard filters for rapid setup and keeping from table collisions. Dynamic wedge filters are positive replacement for hard filters and introduction of dynamic conformal radiotherapy and intensity modulation radiotherapy in a future.

  • PDF

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF

A Study on measurement of scattery ray of Computed Tomography (전산화 단층촬영실의 산란선 측정에 대한 연구)

  • Cho, Pyong-Kon;Lee, Joon-Hyup;Kim, Yoon-Sik;Lee, Chang-Yeop
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2003
  • Purpose : Computed tomographic equipment is essential for diagnosis by means of radiation. With passage of time and development of science computed tomographic was developed time and again and in future examination by means of this equipment is expected to increase. In this connection these authors measured rate of scatter ray generation at front of lead glass for patients within control room of computed tomographic equipment room and outside of entrance door for exit and entrance of patients and attempted to ind out method for minimizing exposure to scatter ray. Material and Method : From November 2001 twenty five units of computed tomographic equipments which were already installed and operation by 13 general hospitals and university hospitals in Seoul were subjected to this study. As condition of photographing those recommended by manufacturer for measuring exposure to sauter ray was use. At the time objects used DALI CT Radiation Dose Test Phantom fot Head (${\oint}16\;cm$ Plexglas) and Phantom for Stomache(${\oint}32\;cm$ Plexglas) were used. For measurement of scatter ray Reader (Radiation Monitor Controller Model 2026) and G-M Survey were used to Survey Meter of Radical Corporation, model $20{\times}5-1800$, Electrometer/Ion Chamber, S/N 21740. Spots for measurement of scatter ray included front of lead glass for patients within control room of computed tomographic equipment room which is place where most of work by gradiographic personnel are carried out and is outside of entrance door for exit and entrance of patients and their guardians and at spot 100 cm off from isocenter at the time of scanning the object. The results : Work environment within computed tomography room which was installed and under operation by each hospital showed considerable difference depending on circumstances of pertinent hospitals and status of scatter ray was as follows. 1) From isocenter of computed tomographic equipment to lead glass for patients within control room average distance was 377 cm. At that time scatter ray showed diverse distribution from spot where no presence was detected to spot where about 100 mR/week was detected. But it met requirement of weekly tolerance $2.58{\times}10^{-5}\;C/kg$(100 mR/week). 2) From isocenter of computed tomographic equipment to outside of entrance door where patients and their guardians exit and enter was 439 cm in average, At that time scatter ray showed diverse distribution from spot where almost no presence was detected to spot with different level but in most of cases it satisfied requirement of weekly tolerance of $2.58{\times}10^{-6}\;C/kg$(100 mR/week). 3) At the time of scanning object amount of scatter ray at spot with 100 cm distance from isocenter showed considerable difference depending on equipments. Conclusion : Use of computed tomographic equipment as one for generation of radiation for diagnosis is increasing daily. Compared to other general X-ray photographing field of diagnosis is very high but there is a high possibility of exposure to radiation and scatter ray. To be free from scatter ray at computed tomographic equipment room even by slight degree it is essential to secure sufficient space and more effort should be exerted for development of variety of skills to enable maximum photographic image at minimum cost.

  • PDF

Change of Dose Distribution on the Beam Axis of 60Co γ Ray and 10MV X-Ray with Part Thickness (치료부위(治療部位)두께에 따른 Co-60 γ선(線)과 10MV X선(線)의 선축상(線軸上) 선량분포(線量分布)의 변화(變化))

  • Kang, Wee Saing;Koh, Kyoung Hwan;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 1983
  • The thickness of the part being irradiated is finite. Percent depth dose tables being used routinely are generally obtained from dosimetry in a phantom much thickner than usual patient. At or close to exit surface, the dose should be less than that obtained from the percent depth dose tables, because of insufficient volume for backscattering. To know the difference between the true absorbed dose and the dose obtained from percent depth dose table, the doses at or close to the exit surface were measured with plate type ionization chamber with volume of 0.5ml. The results are as follows; 1. In the case of $^{60}Co$, percent depth dose at a given depth increases with underlying phantom thickness up to the 5cm. 2. In the case of $^{60}Co$, the dose correction factor at exit surface which is less than 1, increases with part thickness and decreases with field size. 3. Exposure time may not be corrected when the part above 10cm in thickness is treated by $^{60}Co$. 4. In the case of 10MV x-ray, the dose correction factor is nearly 1 and constant for the underlying phantom thickness and field size, so the correction of monitor unit is not necessary for part thickness.

  • PDF

Statistical analysis of failures of a medical linear accelerator over ten years (선형가속기의 10년간 관리 자료를 바탕으로 한 통계분석)

  • Ju, Sang-Gyu;Huh, Seung-Jae;Han, Young-Yih;Seo, Jeong-Min;Kim, Won-Kyou;Kim, Tae-Jong;Park, Young-Hwan
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.158-161
    • /
    • 2004
  • In order for better management of a medical linear accelerator, the records of the operational failures of Varian CL2100C over ten years were analyzed. The failures were classified according to the involved functional subunits and each class was rated into three levels depending on operational conditions. The relationship between the failure rate and working ratio was investigated. Among the recorded failures ( total 587 failures), the most frequent failure, which was 20% of the total. was observed in the parts related to the collimation system including monitor chamber. Regrading to the operational conditions, the 2nd level of failures, that temporally interrupted treatments, was the most frequent. The 3rd level of failures, that interrupted treatment for more than several hours, was mostly caused by the accelerating subunit. The average life-time of a Klystron and Thyratron became shorter as the working ratio increased, which was 42 and 83% of the expected values, respectively. Recording equipment problems and failures in detail over a long period of time can provide a good knowledge of equipment function as well as the capability to forecast future failure. More rigorous equipment maintenance is required for old medical linear accelerator to avoid the serious failure in advance, and improve the patient treatment quality.

  • PDF