• Title/Summary/Keyword: Moniliella

Search Result 6, Processing Time 0.016 seconds

Are the genus Moniliella and Trichosporonoides closely related in molecular taxonomic relationship\ulcorner (분자생물학적 방법을 이용한 Moniliella 속과 Trichosporonoides 속의 분류학적 고찰)

  • 신기선;신용국;태경환;권오유;이상한
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.133-137
    • /
    • 2001
  • The molecular taxonomic relationship of nine species in the genus Moniliella Stolk & Dakin and Trichosporonoides Haskins & Spencer and six species of other yea나-like fungi was examined by sequencing analysis of large subunit rDNA D1/D2 variable domain. The fifteeen species fell into two major groups corresponding with their genetic relationships. The nine species of the genus Moniliella and Trichosporonoides were placed at the same cluster. similarity values based on the D1/D2 domain sequences were 45.4-100% among species of genus Moniliella, 45.2-84.4% among genus Trichosporonoides species, and 45.6-90.1% among species of genus Moniliella and Trichosporonoides. Identical sequence similarity was observed between M. suaveolens var. nigra and M. suaveolens. A colse relationship of M. mellis. and M. acetoabutens is observed. The result of this study provided and insight into the genetic origins of genus Moniliella and Trichosporonoides species as well as their genetic relationships. Genus Moniliella and Trichosporonoides are closely related to each other based on sequence analysis of the large subunit rDNA D1/D2 region and we suggest combination of the genus Moniliella and Trichosporonoides to single genus.

  • PDF

Selection and Characterization of a High Erythritol Producing Mutant of Moniliella suaveolens var. nigra (에리스리톨 고생산성 변이주인 Moniliella suaveolens var. nigra의 선별과 배양특성)

  • 박홍우;이금숙
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.290-294
    • /
    • 2002
  • The present work describes the improvement of an erythritol-producing strain to lower the formation of glycerol, which is a characteristic by-product of the strain and could cause difficulties in the recovery and purification of the final product. The yeast-like fungi Moniliella suaveolens var. nigra, isolated previously in the same laboratory from beehives, was mutated by exposing it to a 4 g/L NTG solution. From a total of 2000 mutated strains, Em6j30-14 was selected as the one having the most desirable properties. Cultivating the strain for seven days in 300 mL flasks containing 30 mL of a 400 g/L glucose medium resulted in an erythritol yield of 43%. The glycerol yield was 5%, which is a value 50% lower as compared with the wild type. However, attempts to reproduce the above results in a 5L-fermenter failed, resulting in a similar erythritol concentration but a much higher formation of glycerol. Possible reasons for such a different behaviour could be oxygen limitation or the aggregation of cells, but the exact mechanism could not yet be identified. Foam formation, which is another major problem in large-scale fermentation, tended to be much lower for the mutant strain.

Screening and Characterization of a Novel Erythritol-producing Microorganism, Moniliella suaveloens var. nigra (새로운 에리스리톨 생산균주인 Moniliella suaveolens var. nigra의 탐색 및 특성)

  • 박지만;박홍우
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.331-335
    • /
    • 1998
  • Erythritol is a four-carbon sugar alcohol with a low calorific value and non-cariogenicity. Erythritol is a new functional sweetener which can be used as sugar alternative. Erytheitol dose not cause discomfort such as diarrhoea and flatulence upon ingestion. The purpose of this study is to develope a novel process of erythritol economically in a large scale. To obtain a high erythritol producer, we have screened 3500 colonies from molasses, honey and honey combs. We have selected 40 erythritol-producing microorganisms, one of which yields 140g/L erythritol in 40% glucose medium. We have tested this strain in 5L fermentor to examine the fermentation characteristics. Results of fermentation show that the erythritol production was about 1.4g/L$.$hr in 400g/L glucose media with a 42% conversion. Further improvements require mutation for a higher producer, process optimization to reduce glycerol, and suppression of excessive foaming.

  • PDF

Optimization of the Medium and Fermentation Conditions with Erythritol Producing Moniliella suaveolens var. nigra (에리스리톨 생산 균주인 Moniliella suaveolens var. nigra를 이용한 배지 및 발효조건의 최적화)

  • Choe, Byeong-Uk;Park, Hong-U
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.628-632
    • /
    • 1999
  • Optimization of the medium and fermentation conditions for erythritol production has been studied. We have found that the optimal carbon source was glucose at the concentration of 400 g/L. The optimal temperature was 3$0^{\circ}C$ with excessive aeration. Improved erythritol productivity was achieved by reducing the yeast extract from 5 g/L to 3g/L while adding 2.7 g/L urea, 1.79g/L $K_2HPO_4, and 0.18g/L MgSO$_4$. 7$H_2O. The erythritol productivity increased from 0.747 g/L/h to 1.071 g/L/h and the yield increased from 31.4% to 45.2%. The byproduct glycerol was reduced from 96.6g/L to 45.7g/L as well. We have performed 5L fermentation with and without the pH control. The erythritol productivity with the pH control was about 30% lower than that without pH control. Excessive foaming of 5L fermentation has been observed during fermentation.

  • PDF

Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects (치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망)

  • Jung, Hoo Kil;Choi, Ha Nuel;Oh, Hyun Hee;Huh, Chang Ki;Yang, Hee Sun;Oh, Jeon Hui;Park, Jong Hyuk;Choi, Hee Young;Kim, Kyoung Hee;Lee, Seung Gu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

Toxigenic Fungal Contaminants in the 2009-harvested Rice and Its Milling-by products Samples Collected from Rice Processing Complexes in Korea (전국 미곡종합처리장에서 채집한 2009년산 쌀과 가공부산물 시료의 독소생성곰팡이 오염)

  • Son, Seung-Wan;Nam, Young-Ju;Lee, Seung-Ho;Lee, Soo-Min;Lee, Soo-Hyung;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.280-287
    • /
    • 2011
  • This investigation was undertaken to survey toxigenic fungal contamination of various rice samples in 93 rice processing complexes (RPC) in Korea. Rice was grown in 2009 and the samples were collected in 2010. Seven types of rice samples such as unhusked, brown, blue-tinged, discolored, polished, half-crushed, and rice husks were obtained from each RPC. One-hundred and five grains of each sample were placed on PDA plates after surface disinfection. The incidence of fungal contaminants was 26.8%. Aspergillus spp. was the most dominant fungal contaminants and Fusarium spp. was the most frequently occurred in samples. The heaviest Fusarium contamination was found in unhusked grain, rice husks, and bare blue-tinged rice and followed by colored rice whereas broken rice was the least contaminated. Regional difference of fungal contamination was distinctive. Fusarium incidence in the rice samples from southern region of Korea including Jeolla and Gyeongsang Provinces was higher than those from central region including Chungcheong, Gyeonggi, and Gangwon Provinces. In contrast to Fusarium spp., Aspergillus spp. and Penicillium spp. were dominated in brown and polished rice samples and their incidences were more severe in central region than southern region. The major contaminants shown more than 1% of kernels infected were Aspergillus (5.0%), Fusarium (2.0%), Alternaria (1.4%), Dreschlera (1.3%), Penicillium spp. (1.3%), and Nigrospora spp. (1.0%). Collectotrichum, Pyricularia, Myrothecium, Epicoccum, Cladosporium, Moniliella, Gloeocercospora, Chaeto- mium, Curvularia, Phialopora, Acremonium, Gliomastix, Trichoderma, Rhizopus, Phomopsis, Paecilomyces, Genicularia, Geotrichum, Acremoniella, Rhizoctonia, Phoma, Oidiodendran, and Candida spp. were among the rest observed at low incidence. The major contaminants of rice samples were well-known as toxigenic fungal genera so toxin producibility of these fungal isolates is necessary to be examined in future. It is also needed to study Myrothecium spp. on species level as it was detected for the first time in rice.