In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3182-3202
/
2015
Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.
The term "Big Data" has been defined to encapsulate a broad spectrum of data sources and data formats. It is often described to be unstructured data due to its properties of variety in data formats. Even though the traditional methods of structuring data in rows and columns have been reinvented into column families, key-value or completely replaced with JSON documents in document-based databases, the fact still remains that data have to be reshaped to conform to certain structure in order to persistently store the data on disc. ETL processes are key in restructuring data. However, ETL processes incur additional processing overhead and also require that data sources are maintained in predefined formats. Consequently, data in certain formats are completely ignored because designing ETL processes to cater for all possible data formats is almost impossible. Potentially, these unconsidered data sources can provide useful insights when incorporated into big data analytics. In this project, using big data solution, Apache Spark, we tapped into other sources of data stored in their raw formats such as various text files, compressed files etc and incorporated the data with persistently stored enterprise data in MongoDB for overall data analytics using MongoDB Aggregation Framework and MapReduce. This significantly differs from the traditional ETL systems in the sense that it is compactible regardless of the data formats at source.
최근 IT 분야에서 빅데이터 관리에 대한 관심이 급증하고 있으며, 빅데이터의 실시간 처리 문제를 해결하기 위해 많은 연구가 진행되고 있다. 네트워크상에서 주고받는 데이터를 실시간으로 저장하는 기능으로 인해 리소스가 많이 필요한 반면, 높은 비용적 측면 때문에 분석 시스템 도입에 문제가 야기 되고 있으며 이러한 문제점 해결을 위해 저비용 고효율성을 만족하는 시스템 재설계의 필요성이 증가되고 있다. 본 논문에서는 빅 데이터 관리를 위한 문서형 DB기반 로그관리 시스템을 설계하기 위해서 문서형 데이터베이스인 MongoDB를 사용하였으며, 제안하는 로그관리 시스템을 통해 고효율의 로그 수집 및 처리와 위,변조에 안전한 로그 데이터 저장을 확인한다.
Reactor Coolant Pump (RCP) is core part of nuclear power plant to provide the forced circulation of reactor coolant for the removal of core heat. Properly monitoring vibration of RCP is a key activity of a successful predictive maintenance and can lead to a decrease in failure, optimization of machine performance, and a reduction of repair and maintenance costs. Here, we developed real-time RCP Vibration Analysis System (VAS) that web based platform using NoSQL DB (Mongo DB) to handle vibration data of RCP. In this paper, we explain how to implement digital signal process of vibration data from time domain to frequency domain using Fast Fourier transform and how to design NoSQL DB structure, how to implement web service using Java spring framework, JavaScript, High-Chart. We have implement various plot according to standard of the American Society of Mechanical Engineers (ASME) and it can show on web browser based on HTML 5. This data analysis platform shows a upgraded method to real-time analyze vibration data and easily uses without specialist. Furthermore to get better precision we have plan apply to additional machine learning technology.
동일한 관심사를 갖는 개인 또는 그룹에서 생성 및 공유한 정보를 선별하여 제공하는 소셜큐레이션 서비스는, 최근 많이 사용되고 있는 SNS 기반 채팅 기능과 접목될 경우 시너지적 효과를 기대할 수 있다. 특히 이러한 기술이 제품 및 서비스를 판매하는 인터넷 쇼핑몰에 적용될 경우, 구매자는 채팅을 통해 보다 신뢰할 수 있는 정보를 실시간으로 제공받을 수 있으며, 판매자는 자사 제품 및 서비스에 관심을 갖는 고객에게 차별적이고 풍부한 정보를 지속적으로 제공할 수 있다. 본 연구는 소셜 큐레이션 서비스를 채팅 기반으로 제공하는 대화형 상거래 플랫폼을 제시한다. 제시된 상거래 플랫폼은 상점 및 상품별로 채팅 채널을 구성하여 상점 및 브랜드, 그리고 세부 상품에 대한 신규 및 기존 고객의 문의에 실시간으로 대응할 수 있고, 해당 채널에 가입된 고객에게 차별화된 판매전략을 지속적으로 구사할 수 있도록 구성되었다. 특히 MongoDB를 이용하여 채널별 수록된 정보와 채팅 내역이 반영구적으로 저장 및 보관되도록 하여, 구매자가 언제든 해당 채널에 수록된 제품 정보와 채팅 내역을 검색 및 참고할 수 있도록 구성하였다.
마이크로 그리드 환경에는 변압기, 스위치, 에너지저장장치 등 많은 종류의 전력 설비가 존재하지만, IoT 기술의 발달에 따라 온도, 압력, 습도와 같은 센서 정보를 취득할 수 있는 기회를 제공하고 있다. 기존의 마이크로 그리드 환경에서는 IEC 61850 표준에서 정의하고 있는 MMS 등의 통신 프로토콜을 준용하여 전력 설비와 플랫폼 간 통합 운용되고 있다. 그렇기 때문에 IoT 데이터를 수용하기 위해서는 IEC 61850 기반으로 구성된 데이터 수집 장치(FEP)에 IoT 데이터를 연계해 줄 수 있는 게이트웨이 기술이 필요하다. 본 논문에서는 마이크로그리드 운영 시스템 연계를 위한 IEC 61850기반 IoT 게이트웨이 플랫폼 프로토타입을 제안하고자 한다. 게이트웨이 플랫폼은 IoT 프로토콜(MQTT, CoAP, AMQP) 인터페이스 모듈과 데이터베이스, IEC 61850서버로 구성되어 있다. 데이터베이스의 경우, JSON 데이터를 저장하기 위해 오픈소스 기반의 NoSQL 데이터베이스인 Hbase와 MongoDB를 이용하였다. IoT 프로토콜을 검증하기 위해 라즈베리파이 아두이노 인텔 에디슨 SoC 기반 전력 IoT 디바이스 시뮬레이터를 이용하였고, IEC 61850은 Sisco's MMS EASY Lite를 이용하여 IoT 프로토콜과 IEC 61850 프로토콜간의 상호호환성을 검증하였다.
최근 빌링(billing, 과금), 벤치마킹, 확장성(scalability), 통계적 목적을 위해 오픈스택 클라우드의 개별 컴포넌트를 모니터링하고 메터링하는 텔레메터링 서비스가 Ceilometer라는 코드명으로 정식 프로젝트로 추가되었다. 초기의 빌링만을 위해 필수 요소만 모니터링하는 것에서, 상태를 감시하여 클라우드 자원의 오토스케일링 등의 오케스트레이션 기능을 위한 다목적성으로 발전하고 있다. 특히 이것은 빅데이터 등의 데이터 분석에 있어서 중요한 힌트를 제공해 준다. 본고는 소스분석을 통한 Ceilometer의 데이터 수집 구조, Ceilometer 모니터링의 핵심 키워드, 비정형 데이터 DB인 MongoDB, 외부인터페이스로써 API(Application Interface) 혹은 CLI(Command Line Interface) 명령어를 소개하고자 한다. 결론에서는 ceilometer의 전반적 구조에 대한 나름대로의 평가를 기술하였다.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.150-156
/
2024
With the advent of personalized search engines, a myriad of approaches came into practice. With social media emergence the personalization was extended to different level. The main reason for this preference of personalized engine over traditional search was need of accurate and precise results. Due to paucity of time and patience users didn't want to surf several pages to find the result that suits them most. Personalized search engines could solve this problem effectively by understanding user through profiles and histories and thus diminishing uncertainty and ambiguity. But since several layers of personalization were added to basic search, the response time and resource requirement (for profile storage) increased manifold. So it's time to focus on optimizing the layered architectures of personalization. The paper presents a layout of the multi agent based personalized search engine that works on histories and profiles. Further to store the huge amount of data, distributed database is used at its core, so high availability, scaling, and geographic distribution are built in and easy to use. Initially results are retrieved using traditional search engine, after applying layer of personalization the results are provided to user. MongoDB is used to store profiles in flexible form thus improving the performance of the engine. Further Weighted Sum model is used to rank the pages in personalization layer.
제조업의 생산 방법은 노동집약적인 방법에서 제조설비 중심의 기술집약적인 방법으로 변경되어가고 있다. 사람의 노동력을 제조설비가 대체하게 되면서 제조설비의 모니터링과 관리의 중요성이 강조되고 있다. 또한, 최근 빅데이터 기술은 한정된 데이터에서 새로운 가치를 찾아내는 중요한 기술로 등장하였다. 따라서 제조업의 변화는 기존 제조 공장에 사물인터넷(IoT), 정보통신기술, 센서 데이터, 빅데이터를 융합한 스마트팩토리의 필요성을 증대시켰다. 본 논문에서는 제조설비 데이터를 몽고DB에 실시간으로 분산 저장 및 처리하는 기술과 R 프로그래밍을 사용한 시각화를 통해 기존 국내 제조업 공장이 빅데이터 기반의 스마트팩토리가 되기 위한 전략을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.