• Title/Summary/Keyword: Momentum flux

Search Result 181, Processing Time 0.026 seconds

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.

Boron Nitride Films Grown by Low Energy Ion Beam Assisted Deposition

  • Park, Young-Joon;Baik, Young-Joon;Lee, Jeong-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • Boron nitride films were synthesized with $N_2$ion flux of low energy, up to 100 eV, at different substrate temperatures of no heating, 200, 400, 500, and $800^{\circ}C$, respectively. Boron was supplied by e-beam evaporation at the rate of $1.5\AA$/sec. For all the conditions, hexagonal BN (h-BN) phase was mainly synthesized and high resolution transmission electron microscopy (HRTEM) showed that (002) planes of h-BN phase were aligned vertical to the Si substrate. The maximum alignment occurred around $400^{\circ}C$. In addition to major h-BN phase, transmission electron diffraction (TED) rings identified the formation of cubic BN (c-BN) phase. But HRTEM showed no distinct and continuous c-BN layer. These results suggest that c-BN phase may form in a scattered form even when h-BN phase is mainly synthesized under small momentum transfer by bombarding ions, which are not reconciled with the macro compressive stress model for the c-BN formation.

  • PDF

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.

A Simple Condensation Model on the Vapor Jets in Subcooled Water (과냉각수로 방출되는 증기제트의 응축모델)

  • Kim, Hwan-Yeol;Ha, Kwang-Soon;Bae, Yoon-Yeong;Park, Jong-Kyun;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.240-245
    • /
    • 2001
  • Phenomena of direct contact condensation (DCC) heat transfer between steam and water are characterized by the transport of heat and mass through a moving steam/water interface. Application of the phenomena of DCC heat transfer to the engineering industries provides some advantageous features in the viewpoint of enhanced heat transfer. This study proposes a simple condensation model on the steam jets discharging into subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The analysis model was derived from the mass, momentum and energy equations as well as a thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The analysis results were compared with the experimental ones. The analysis model predicted that the steam jet shape (i. e. radius and length) was increasing as the steam mass flux and the pool temperature were increasing, which was similar in trend to that observed in the experiment.

  • PDF

A Study on The Transformation of Style & Liturgical Space of Catholic Churches in Busan Diocese(I) - Focus on Five Catholic churches in Busan diocese constructed between the end of 19th century and 1962 - (천주교 부산교구 성당건축의 양식과 전례(典禮)공간 변화경향 연구(I) - 19세기 말에서 1962년 사이에 건립된 부산(釜山)교구 5개 주요 성당건축을 중심으로 -)

  • Kweon, Tae-Ill
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.5
    • /
    • pp.164-174
    • /
    • 2009
  • Since the end of 19th century, The form and inner space for the religious ceremony; liturgical space of Catholic churches in Busan diocese have been changed as various styles by several outer and inner factors. The changing of historical, social, and religious environment, such as Opening Harbor, Japanese Occupation, Korean War & Rehabilitation Period, and Vatican II are generally regarded as main outer factors, and the locality that lay behind the flux of those events is considered as the main inner factor. The former has usually operated as a momentum for showing general trend of Catholic church, while the latter has made local singularity expressed as unusual style and somewhat modified liturgical space compared with Its contemporary churches. In the context, this paper attempt to analyze the transformation process of style and liturgical space of Catholic churches in Busan diocese focused on revealing local singularity with main five churches, Bumil Church, Samrangjin Church, Milyang Church, Jungang Church, and Dongrae Church, constructed between the end of 19th century and 1962.

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song Jin-Kwan;Ahn Kyu-Bok;Oh Jeong-Seog;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.201-206
    • /
    • 2005
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic crossflows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

Characteristics of Vertical Variation of Wind Resources in Planetary Boundary Layer in Coastal Area using Tall Tower Observation (타워 관측 자료를 이용한 연안 대기 경계층 내 바람 자원의 연직 변동 특성)

  • Yoo, Jung-Woo;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.632-643
    • /
    • 2012
  • Analysis of wind resources in Planetary Boundary Layer (PBL) using long term observation of tall tower located near coast line of the Korean Peninsula were carried out. The data observed at Pohang, Gunsan and Jinhae are wind, temperature and relative humidity with 10 minute interval for one year from 1 October 2010. Vertical turbulence intensity and its deviation at Pohang site is smaller than those of other sites, and momentum flux estimated at 6 vertical layers tend to show small difference in Pohang site in comparison with other sites. The change of friction velocity with atmospheric stability in Pohang is also not so great. These analysis indicate the mechanical forcing due to geographical element of upwind side is more predominant than thermal forcing. On the other hand, wind resources at Gunsan and Jinhae are mainly controlled by thermal forcing.

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.