최근 기계학습에 대한 관심이 높아지고 연구가 활성화됨에 따라 다양한 기계학습 모델에서 최적의 하이퍼 파라미터 조합을 찾는 것이 중요해지고 있다. 본 논문에서는 다양한 하이퍼 파라미터 중에서 옵티마이저에 중점을 두고, 다양한 데이터에서 주요 옵티마이저들의 성능을 측정하고 비교하였다. 특히, 가장 기본이 되는 SGD부터 Momentum, NAG, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax, Nadam까지 총 9개의 옵티마이저의 성능을 MNIST, CIFAR-10, IRIS, TITANIC, Boston Housing Price 데이터를 이용하여 비교하였다. 실험 결과, 전체적으로 Adam과 Nadam을 사용하였을 때 기계학습 모델의 손실 함숫값이 가장 빠르게 감소하는 것을 확인할 수 있었으며, F1 score 또한 높아짐을 확인할 수 있었다. 한편, AdaMax는 학습 중에 불안정한 모습을 많이 보여주었으며, AdaDelta는 다른 옵티마이저들에 비하여 수렴 속도가 느리며 성능이 낮은 것을 확인할 수 있었다.
본 논문의 목적은 다목적 저수지의 홍수유입량 예측을 위한 방법으로 병렬다중결선의 계층구조를 가진 신경망이론에 의하여 홍수시 불확실한 비선형시스템의 특성을 같는 저수지 유입량 예측모형을 개발하는 것이다. 신경망이론을 이용한 예측모형의 개발을 위하여 역전파 학습알고리즘을 사용하였으며 역전파 학습알고리즘 사용시 흔히 대두되는 지역최소값 문제와 수렴속도의 향상을 위해서 최적화기법인 경사하강법을 이용한 모멘트법과 경사하강법과 Gauss-Newton 방법을 이용한 Leverberg-Marquardt 법을 사용하였다. 모형개발에 사용된 자료는 연속적인 값으로 입력자료와 출력자료를 강우와 댐유입량을 학습시킨 후, 저수지의 홍수유입량 예측을 위한 다층신경망 모형을 구성하였다. 학습시 사용한 자료를 토대로 개발된 모형을 검정한 결과 매우 만족스런 결과를 얻을 수 있었고 실제 충주댐 유역을 대상으로 저수지 홍수유입량 예측결과 모형의 타당성을 입증할 수 있었다.
인터넷이 대중화되기 시작하면서 해킹 및 시스템과 네트워크에 대한 공격이 있어 왔고, 날로 그 기법들이 진화되면서 기업 및 사회에 위험과 부담감을 주었다. 그러한 위험과 부담감을 덜기 위해서는 조기에 해킹 및 공격을 탐지하여 적절하게 대응해야 하는데, 그에 앞서 반드시 네트워크 침입탐지의 신뢰성을 높일 필요가 있다. 본 연구에서는 네트워크 침입탐지 정확도를 향상시키기 위해 가중치 초기화와 가중치 최적화를 KDD'99 데이터셋에 적용하는 연구를 하였다. 가중치 초기화는 Xavier와 He 방법처럼 가중치 학습 구조와 관련된 초기화 방법이 정확도에 영향을 준다는 것을 실험을 통해 알 수 있었다. 또한 가중치 최적화는 현재 가중치를 학습률에 반영할 수 있도록 한 RMSProp와 이전 변화를 반영한 Momentum의 장점을 결합한 Adam 알고리즘이 정확도면에서 단연 돋보임을 네트워크 침입탐지 데이터셋의 실험을 통해 확인하였다.
In this paper, the method for improving the speed of convergence and learning rate of back propagation algorithms is proposed which update the learning rate parameter and momentum term for each weight by generated error, changely the output layer of neural network generates a high value in the case that output value is far from the desired values, and genrates a low value in the opposite case this method decreases the iteration number and is able to learning effectively. The effectiveness of proposed method is verified through the simulation of X-OR and 3-parity problem.
This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.
Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.
n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .
역전파 알고리즘의 성능 개선을 위해서 학습율을 자동 조정하는 방식을 제안하였다. 제안한 방식은 각각의 연결강도의 학습율을 퍼지 논리 시스템을 이용하여 자동 조정하는 방식으로 각각의 연결강도에 대해서 ${\Delta}$와 $\bar{{\Delta}}$를 구하여 퍼지 논리 시스템의 입력으로 사용하고, 학습율을 출력으로 사용하였다. 제안한 방식을 N-패리티 문제, 함수 근사, 숫자 패턴 분류에 대한 시뮬레이션 결과 일반적인 역전파 알고리즘, 모멘텀 방식, Jacobs의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.
본 연구에서는 신경망 기반 독립성분분석의 분리성능을 개선하기 위해 할선법과 모멘트의 조합형 고정점 알고리즘을 제안하였다. 할선법은 독립성분 상호간의 정보를 최소화하는 목적함수의 근을 근사적으로 구함으로써 계산과정을 단순화하여 좀 더 개선된 분리성능을 얻기 위함이고, 모멘트는 계산과정에서 발생하는 발진을 억제하여 보다 빠른 분리속도를 얻기 위함이다. 이렇게 하면 할선법이 가지는 근사성에 따른 우수성과 과거의 속성을 반영하여 발진을 억제하는 모멘트의 우수성을 동시에 살릴 수 있다. 제안된 알고리즘을 $256\times{256}$ 픽셀의 8개 지문과 $512\times{512}$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 생성된 복합지문과 복합영상을 각각 대상으로 시뮬레이션 한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 할선법의 이용은 뉴우턴법을 이용한 고정점 알고리즘보다 초기값에도 덜 의존하며, 문제의 규모가 커짐에 따른 비현실적인 분리시간도 해결할 수 있음을 확인하였다.
Journal of information and communication convergence engineering
/
제22권2호
/
pp.165-171
/
2024
In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101 backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCopretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant improvement and achieved the highest accuracy of 87.9%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.