• Title/Summary/Keyword: Moment variation

Search Result 366, Processing Time 0.028 seconds

Spliced Two Span Bridge with the U-Type Precast Girders by Using the Secondary Moment (2차 모멘트를 이용한 U형 프리캐스트 거더의 연속화)

  • 이환우;조은래;김광양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.193-200
    • /
    • 1998
  • The precast prestressed concrete girders of I-type section are frequently employed to design the short-to-medium span bridge. However, its beam depth is greatly increased as its span length is increased over than about 30m. Therefore, the economic and aesthetic effectiveness are rapidly decreased in case of the span length over 30m. The purpose of this paper is to verify the structural safety on the new spliced two span bridge and analyze the variation of member forces and stress distribution according to the construction stages and time. The new spliced technique is performed by partial post tensioning and release in the U-type girders. The structural characteristics of this technique is the introduction of secondary moment to reduce the bending moment by self weight of precast U-type girders constructed in simply supported beam type. So, it is expected that the structural efficiency of this spliced bridge may be improved more than other techniques.

  • PDF

Analytical Investigation on the Behavior of Simple Span Integral Abutment Bridge (단경간 일체식교대 교량의 거동에 대한 해석적 연구)

  • 홍정희;정재호;박종면;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.99-106
    • /
    • 2002
  • This paper presents an analytical investigation on the behavior of simple span integral abutment bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. Although the temperature variation and earth pressure are the major attributor to the total stress in integral abutment bridge, the superstructure has been designed by modeling it as a simple or continuous beam In order to investigate the effect of temperature change and earth pressure on the superstructure of integral bridge, the simple span integral bridge is modeled as a plane frame element. Performing frame analysis, the variations of bending moment and axial force of superstructure due to the various loading combination are investigated with respect to the flexural rigidity of piles, and the bending moment and axial force obtained by frame analysis are compared with the maximum bending moment obtained by conventional design method and initial prestressing force respectively.

  • PDF

Shape Sequence Descriptor for Describing Shape Variation by Object Movement (움직임에 의한 모양 변화 기술을 위한 모양 시퀀스 기술자)

  • 공영민;최민석;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.355-358
    • /
    • 2001
  • 본 논문에서는 객체의 움직임에 의한 모양 변화를 표현하기 위하여 MPEG-7 에 제안된 모양 시퀀스 기술자(Shape Sequence Descriptor)에 대하여 설명하고, 모양 시퀀스 기술자 추출에 필요한 Shape Variation Map 생성을 위한 두 가지 방법을 비교하였다. 기존의 방법은 물체의 평균 적인 모양에 가중치를 두어 생성되며, 새로운 방법은 물체의 움직임에 의해 변화되는 부분에 더 가중치를 두는 방법으로 생성된다. 또한 최종적으로 사용되는 특징 값으로 Zernike moment를 이용하는 방법과 ART(Angular Radial Transform)을 이용하는 방법을 비교하여 모양 시퀀스 검색을 위한 가장 효율적인 방법을 제안하였다.

  • PDF

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

Numerical computation of turbulent flow in a square sectioned $180^{\circ}$ bend by low-Reynolds-number second moment turbulence closure (저레이놀즈수 2차 모멘트 난류모형에 의한 정사각단면의 $180^{\circ}$ 곡덕트 난류유동의 수치해석)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2650-2669
    • /
    • 1996
  • A new low Reynolds number nonlinear second moment turbulence closure was introduced to analyze a square sectioned 180.deg. bend flow. Inclusion of nonlinear return to isotropy term and cubic mean pressure strain term has brought out a marked improvement in the level of agreement with measured velocity profiles. Optimization of present closure was performed by comparison of computed velocity profiles with the experimental ones with variation of nonlinear return to isotropy term and quadratic and cubic pressure-strain model. Progressive vortex breakdown due to the interaction of primary and secondary flows was well captured by using the optimized second moment turbulence closure.

Effects of Design Parameters on Rattle Noise in a Direct Engine-PTO Driveline of Tractors (엔진 직결식 PTO 전동 라인의 주요 설계 변수가 PTO 변속부의 치타음에 미치는 영향)

  • Park Y.J.;Kim K.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.323-333
    • /
    • 2006
  • Introduction of a direct engine-PTO driveline to agricultural tractors has reduced production cost and increased transmission efficiency of the PTO driveline. However, this type of PTO driveline has caused a severe rattle noise in the PTO gearbox under idle conditions. This study was conducted to investigate the causes of the rattle noise and the effects of driveline parameters on it. A mathematical model was developed for a direct engine-PTO driveline. The model was proved experimentally to be accurate enough to simulate the dynamic characteristics of the PTO driveline motions. The simulation study showed that the rattle noise was caused by collisions between the driving and driven gears in the PTO gearbox due to velocity variation of the gears, which was induced by torque fluctuations from the engine. It was also found that the rattle noise decreased with the drag torque and mass moment of inertia of the engine flywheel. Smaller mass moment of inertia of the driven gears and backlash also reduced the rattle noise. However, increasing the drag torque and mass moment of the engine flywheel or decreasing the backlash and mass moment of inertia of the driven gears were limited practically by their detrimental effects on transmission efficiency, gear strength and smooth meshing of the gears.

Derivation of relationship between cross-site correlation among flows and among estimators of L-moments for GEV and GLO distribution (GEV와 GLO 분포의 유출량 교차상관과 L-moment 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il;Stedinger, Jery R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.321-325
    • /
    • 2007
  • 3개의 매개변수(location, scale, shape)로 이루어진 GEV와 GLO 분포는, 미국의 공식적인 홍수빈도 분포인 Log Pearson Type III와 함께 수문분야에서 중요한 위치를 차지하고 있다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV와 GLO 분포에서 서로 다른 두 지점의 유출량 자료를 생성하여 L-CV(L-moment Coefficient of Variation; $\tau_2$)와 L-CS(L-moment Coefficient of Skewness; $\tau_3$)를 추정하였으며, L-moment 추정값들 간의 교차상관$(\tau_2-\tau_2,\;\tau_3-\tau_3,\;\tau_2-\tau_3)$과 유출량 자료간의 교차상관의 관계를 Simple Power 함수를 이용하여 유도하였다. 실험 과정에서 GEV와 GLO 분포가 비현실적인 음수 유출량을 생성하여, 실험 결과에 큰 영향이 있음을 확인하여, 두 분포에서 생성된 유출량 자료에서 음수값을 제외한 GEV+와 GLO+ 분포를 이용하여 관계식을 유도하고 이를 GEV와 GLO 분포의 결과와도 비교하였다. 본 연구에서 도출된 관계식은 향후 Generalized Least Square 회귀식을 이용하여 홍수분포의 지역 매개변수를 추정하기 위해 활용성이 클 것으로 기대한다.

  • PDF

Determination of Design Moments in Bridges Constructed by Movable Scaffolding System (MSS공법으로 시공되는 교량의 설계 모멘트 결정)

  • 곽효경;손제국
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.317-327
    • /
    • 2001
  • In this paper, a relation to calculate design moments for reinforced concrete(RC) bridges constructed by movable scaffolding system(MSS) is introduced. Through the time-dependent analysis of RC bridges considering the construction sequence, the structural responses related to the member forces and deflections are reviewed, and a governing equation for determination of the design moment, which includes the creep deformation, is derived on the basis of the displacement-force condition at every constructuion stage. By using the relation, the design moment and its variation over time can easily be obtained only with the elastic analysis results without additional time-dependent analysis. In addition, correlation studies with the results by rigorous numerical analyses are conducts to verify the applicability of the introduced relation, and a more reasonable guideline for the determination of design moments is proposed on the basis of the obtained moment envelop.

  • PDF

A STUDY ON THE PATTERN OF MOVEMENT DURING RETRACTION OF MAXILLARY CENTRAL INCISOR BY FINITE ELEMENT METHOD (상악 중절치 후방 이동시의 이동양상에 관한 유한요소법적 연구)

  • Jang, Jae Wan;Sohn, Byung Wha
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.617-634
    • /
    • 1991
  • The retraction of anterior teeth is one of the fundamental methods in orthodontic treatment and a proper position and angulation of anterior teeth after the retraction are very important for esthetics, stability, and function of teeth. In this research we analyzed, by Finite Element Method, the stress distribution on the periodontal ligament according to the variation of force and moment applied on the crown and predict the pattern of movement of maxillary central incisor. At the same time, the amount of force and moment caused by activation of the loop which was used for retraction of maxillary central incisor was analyzed by Finite Element Method. We observed the following results: 1) We could control the stress distribution on the periodontal ligament by proper moment/force ratio on maxillary right central incisor and predict the pattern of movement of maxillary right central incisor. 2) The amount of stress on the periodontal ligament as well as the moment/force ratio demanded by each pattern of movement increased as the destruction of alveolar bone was worse. 3) The moment/force ratio demanded by each pattern of movement decreased as the angle between the maxillary central incisor and occlusal plane decreased. 4) The force with the open loop was shown to be large compared to that with the closed loop. Also, the force with the helix decreased by 30% compared to that without the helix. 5) Under the same conditions we observed a larger moment/force ratio when the open loop and/or the helix were used.

  • PDF

A Study on the Minimum Weight Difference Threshold in a VR Controller with Moment Variation (VR 컨트롤러의 모멘트 변화에 따른 최소 무게 차이 인지에 관한 연구)

  • Baek, Mi-Seon;Kim, Huhn
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • This study is about the VR controller that can provide an enhanced experience in VR by augmenting the sense of weight. In this study, the method of changing the center of gravity of the controller was used as a means of transmitting the sense of weight. The experiment was carried out with a device that could change the center of gravity to find the minimum distance at which people can perceive the difference in weight. The results showed that the weight difference between the two stimuli can be perceived at a distance of about 5 cm regardless of the position of the starting stimulus.