• Title/Summary/Keyword: Moment plane

Search Result 346, Processing Time 0.025 seconds

H-Polarized Scattering by a Resistive Strip Grating with Zero Resistivity at Strip-Edges Over a Grounded Dielectric Plane (접지된 유전체 평면위의 스트립 양끝에서 0 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.349-354
    • /
    • 2011
  • In this paper, H-polarized scattering problems by a resistive strip grating with zero resistivity at strip-edges over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a transverse electric (TE) plane wave are analyzed by applying the Fourier-Galerkin Moment Method (FGMM). The tapered resistivity of resistive strips has zero resistivity at strip edges, then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind as a orthogonal ploynomials. The sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies, the numerical results for the reflected power are compared with those of uniform resistivity in the existing papers.

H-Polarized Scattering by a Resistive Strip Grating with the Tapered Resistivity Over a Grounded Dielectric Plane : from Finite at One Strip-Edge to Zero at the Other Strip-Edge (접지된 유전체 평면위의 변하는 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란 : 한쪽 모서리에서 유한하고 다른쪽 모서리로 가면서 0인 경우)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.543-548
    • /
    • 2011
  • In this paper, H-polarized electromagnetic scattering problems by a resistive strip grating over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a TE (transverse electric) plane wave are analyzed by applying the FGMM (Fourier-Galerkin Moment Method). The tapered resistivity of resistive strips in this paper varies from finite resistivity at one edge to zero resistivity at the other edge, then the induced surface current density on the resistive strip is expanded in a series of Jacobi polynomials of the order ${\alpha}=1$, ${\beta}=0$ as a kind of orthogonal polynomials. The numerical results of the normalized reflected power show in good agreement with those of existing papers.

Out-Of-Plane Bending Stiffnesses in Offshore Mooring Chain Links Based on Conventional and Advanced Numerical Simulation Techniques (기존/개선 수치 해석 기법을 이용한 계류 체인 링크의 면외 굽힘 강성)

  • Choung, Joonmo;Lee, Jae-bin;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.297-309
    • /
    • 2018
  • After an accident involving mooring link failures in an offloading buoy, verification of the fatigue safety in terms of the out-of-plane bending (OPB) and in-plane bending (IPB) moments has become a key engineering item in the design of various floating offshore units. The mooring links for an 8 MW floating offshore wind turbine were selected for this study. To identify the OPB stiffness (OPB moment versus interlink angle), a numerical simulation model, called the 3-link model, is usually composed of three successive chain links closest to the fairlead or chain hawse. This paper introduces two numerical simulation techniques for the 3-link analyses. The conventional and advanced approaches are both based on the prescribed rotation approach (PRA) and direct tension approach (DTA). Comparisons of the nominal stress distributions, OPB stiffnesses, hotspot stress curves, and stress concentration curves are presented. The multiple link analyses used to identify the tension angle versus interlink angle require the OPB stiffness data from the 3-link analyses. A convergence study was conducted to determine the minimum number of links for a multi-link analysis. It was proven that 10 links were sufficient for the multi-link analysis. The tension angle versus interlink angle relations are presented based on multi-link analyses with 10 links. It was found that the subsequent results varied significantly according to the 3-link analysis techniques.

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

A study on the correction of a position and orientation of the chip using DSP in the 2nd plane (DSP를 이용한 2차원 평면에서 chip의 위치와 자세보정에 관한 연구)

  • 유창목;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1316-1319
    • /
    • 1996
  • This paper proposes the algorithm for the correction of a position and orientation of small object such as chip in the precise construction process. In the past, it is general to correct position and orientation of object using human sight and simple vision sensors. But recently, researches using image processing devices have been studied to improve the corrective precision of a position and orientation of object. In this piper, maximum-axis moment and p-theta algorithm are used to correct the position and orientation. Algorithm of maximum-axis moment is widely applied to hetero-object except being applied to a perfect rectangle. This is reason that moments of the X and Y-axis are equal. Therefore, being the shape of a perfect rectangle, the object is applied to other algorithm. In the light of time problem, real-time control is as important as correction of object. To solve it, we use the DSP(Digital Signal Processing) which is far more fast than PC.

  • PDF

Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets (두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달)

  • 류호선;박승오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.

Behavior of Punch Deformation in Precision Shearing Process Using Press Die (금형을 이용한 정밀전단가공에서 펀치의 변형거동)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.62-69
    • /
    • 2000
  • Uneven clearances in the left and right sides of a press die cause deformation of the punch in precision shearing process. This deformation results from the compression stress and bending moment from shearing force in vertical direction and from the side force in horizontal direction acting to the punch, In this study the behavior of punch deformation is investigated in order to clarify the deformation state of the punch by using strain gauge deformation to shearing force side force bending moment radius of curvature and shear plane of the punch. Also we presented the calculation method of deformation size for the punch.

  • PDF

Analytical Investigation on the Behavior of Simple Span Integral Abutment Bridge (단경간 일체식교대 교량의 거동에 대한 해석적 연구)

  • 홍정희;정재호;박종면;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.99-106
    • /
    • 2002
  • This paper presents an analytical investigation on the behavior of simple span integral abutment bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. Although the temperature variation and earth pressure are the major attributor to the total stress in integral abutment bridge, the superstructure has been designed by modeling it as a simple or continuous beam In order to investigate the effect of temperature change and earth pressure on the superstructure of integral bridge, the simple span integral bridge is modeled as a plane frame element. Performing frame analysis, the variations of bending moment and axial force of superstructure due to the various loading combination are investigated with respect to the flexural rigidity of piles, and the bending moment and axial force obtained by frame analysis are compared with the maximum bending moment obtained by conventional design method and initial prestressing force respectively.

  • PDF

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

In-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 내평면 좌굴해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2858-2864
    • /
    • 2012
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of in-plane buckling of the curved beams. Critical moments and loads are calculated for the beam subjected to equal and opposite bending moments and uniformly distributed radial loads with various end conditions and opening angles. Results are compared with existing exact solutions where available. The DQM gives good accuracy even when only a limited number of grid points is used. More results are given for two sets of boundary conditions not considered by previous investigators for in-plane buckling: clamped-clamped and simply supported-clamped ends.