• Title/Summary/Keyword: Moment of Inertia

Search Result 455, Processing Time 0.031 seconds

A Note on the Two-Dimensional Added Mass Moment of Inertia in Torsional Vibration of Cylinders of Curvilinear-Element Sections with Chines. (배골형단면(背骨型斷面) 주상체(柱狀體)의 자유수면(自由水面)하에서의 비틂진동(振動)에 대(對)한 이차원적(二次元的) 부가관성(附加慣性)모우먼트의 계산(計算))

  • Key-P.,Rhee;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.41-44
    • /
    • 1974
  • A calculation of the two dimensional added mass moment of inertia for the Kim's chine form sections is made with a special consideration of a location of a axis of rotation. The results are compared with those of Lewis form section equivalent to the above chine form sections calculated by Kumai.

  • PDF

An effective stiffness model for RC flexural members

  • Balevicius, Robertas
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.601-620
    • /
    • 2006
  • The paper presents an effective stiffness model for deformational analysis of reinforced concrete cracked members in bending throughout the short-term loading up to the near failure. The method generally involves the analytical derivation of an effective moment of inertia based on the smeared crack technique. The method, in a simplified way, enables us to take into account the non linear properties of concrete, the effects of cracking and tension stiffening. A statistical analysis has shown that proposed technique is of adequate accuracy of calculated and experimental deflections data provided for beams with small, average and normal reinforcement ratios.

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

Transient Performance Analysis of the Reactor Pool in KALIMER-600 with an Inertia Moment of a Pump Flywheel (펌프 회전차의 관성모멘트 제공에 의한 KALIMER-600 원자로 풀 과도 성능 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Lee, Tea-Ho;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.418-426
    • /
    • 2009
  • The effect of an inertia moment of a pump flywheel on the thermal-hydraulic behaviors of the KALIMER-600(Korea Advanced LIquid MEtal Reactor) reactor pool during an early-phase of a loss of normal heat sink accident was investigated. The thermal-hydraulic analyses for a steady and a transient state were made by using the COMMIX-1AR/P code. In the present analysis a quarter of the reactor geometry was modeled in a cylindrical coordinate system, which includes a quarter of a reactor core and a UIS, a half of a DHX and a pump and a full IHX. In order to evaluate the effects of an inertia moment of the pump flywheel, a coastdown flow whose flow halving time amounts to 3.69 seconds was supplied to a natural circulation flow in the reactor vessel. Thermal-hydraulic behaviors in the reactor vessel were compared to those without the flywheel equipment. The numerical results showed a good agreement with the design values in a steady state. It was found that the inertia moment contributes to an increase in the circulation flow rate during the first 40 seconds, however to a decrease of it there after. It was also found that the flow stagnant region induced by a core exit overcooling decelerated the flow rate. The appearance of the first-peak temperature was delayed by the flow coastdown during the initial stages after a reactor trip.

Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage (탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구)

  • Lee, Kun-Hee;Bae, Jong-Gug;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

Topology Optimization of a HDD Actuator Arm

  • Chang, Su-Young;Cho, Ji-Hyon;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • A study on the topology optimization of a Hard-Disk-Driver(HDD) actuator arm is presented. The purpose of the present wert is to increase the natural frequency of tole first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of the high speed actuator arm. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, tole smoothly-varying density field is obtained without checker-board patterns incurred. AS a result of 7he study, an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode of the suggested design is subsequently increased over the existing one.

  • PDF

Biodynamic Characteristics of Korean Male in Twenties-Mass, Center of Mass and Moment of Inertia Characteristics of Body Segments (한국인 20대 청년 인체분절의 관성특성에 관한 연구)

  • 이영신;임현균;김철중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1952-1966
    • /
    • 1994
  • The body segment parameters of twelve young male Korean were measured to compare with the results of foreign cadaver studies. A human body was assumed to have fourteen body segments. The mass of each segment was measured with a water immersion test and the mass center of a segment was determined on the balance platform by changing postures. In the case of Korean, because of the difference in body proportion, the mass center of whole-body is located further from the distal end of head(Korean : 44.9% vs. Caucasian : 41.2%), and the mass center of each segment also located in different proportional locations. The existing regression equations, which can estimate segment mass based upon the anthropometric dimensions, estimates segment mass (the mass of shank) for Korean with 13% error. Therefore, it is not recommended to estimate the mass, and the moment of inertia of body segment of Korean based on the existing equations. However, the density information of body constituents was similar enough to apply it to Korean density. It was validated by the comparison between the results of the direct immersion method and 3-dimensional volume reconstruction of segment form the cross sectional images of CT-scan. The average body density measured form twelve subjects was $1.035{\;}kg/m^3$ and showed deceasing trendency.

Topology Optimization of a HDD Actuator Arm (HDD 구동기 팔의 위상 최적화)

  • Chang, Su-Young;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1801-1809
    • /
    • 2000
  • A study on the topology optimization of Hard-Disk-Driver(HDD) actuator arm in free vibration is presented. The purpose of this research is to increasse the natural frequency of the first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of high speed actuator am. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, the smoothly-varying density field is obtained without checker-board patterns incurred. As a result of the study an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode or the suggested design is subsequently increased over the existing one.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;진종태;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF