• Title/Summary/Keyword: Moment magnitude

Search Result 237, Processing Time 0.033 seconds

The Prevention of the Longitudinal Deformation on the Built­Up Beam by using Induction Heating

  • Park, J.U.;Lee, C.H.;Chang, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the Built­Up beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built­Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built­Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to a real structure.

  • PDF

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF

Positive Position Feedback Control of Plate Vibrations using Moment Pair Actuators (모멘트상 액추에이터가 적용된 평판의 PPF 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.527-535
    • /
    • 2012
  • This paper reports the active vibration control of plates using positive position feedback controller (PPF). The equations of motion of the plate under force and moment pairs were derived and the equations of PPF controllers were formulated. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics to be more stable. Two PPF controllers connected in parallel, Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 2 modes can be obtained.

  • PDF

Behavior of Laterally Cyclic Loaded Piles Driven into Sand (모래지반에서 반복수평하중을 받는 항타말뚝의 거동)

  • Paik, Kyu-Ho;Park, Won-Woo;Kim, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

Lateral Behavior of Driven Piles Subjected to Cyclic Lateral Loads in Sand (모래지반에서 반복수평하중을 받는 항타 말뚝의 수평거동)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.41-50
    • /
    • 2010
  • The behavior of laterally cyclic loaded piles is different from that of piles under monotonic loading and depends on soil and load characteristics. In this study, model pile load tests were performed using a calibration chamber to investigate the effects of load characteristics on the behavior of laterally cyclic loaded piles in sand. Results of the model tests show that the ultimate lateral load capacity of laterally cyclic loaded piles decreases linearly with increasing the number of cycles and increases slightly with increasing the magnitude of cyclic lateral loads. When the piles reach the ultimate state, the maximum bending moment developed in the piles decreases linearly with increasing the number of cycles and it occurs at a depth of 0.36 times pile embedded length for all the number of cycles. However, both the magnitude and depth of the maximum bending moment of piles in the ultimate state increase slightly as the magnitude of cyclic lateral loads increases. It is also observed that the cyclic lateral loading generates a decrease in the ultimate lateral load capacity and maximum bending moment for piles in the ultimate state. In addition, based on the model test results, a new empirical equation for the ultimate lateral load capacity of laterally cyclic loaded piles in dense sand is also proposed. A comparison between predicted and measured load capacities shows that the proposed equation reflects satisfactorily the model test results.

The Influence of Inertial Moment of Tip Mass on the Stability of Beck's Column (말단질량 의 관성모우멘트 가 Beck's Column 의 안정성 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 1984
  • An analysis is presented for the vibration and stability of Beck's column carring a tip mass at its free and subjected there to a follower compressive force by using variational approach. The influence of transverse shear deformation and rotatory inertial of the mass of the column upon the critical flutter load and frequency is considered, and Timoshenko's shear coefficient K' is calculated by Cowper's formulae. It is, moreover, worth noticing that the influence of inertial moment of tip mass upon the flutter load and frequency is investigated. The centroid of a tip mass is offset from the free end of the beam and located along its extended axis of the two cases, one of which has a tip mass increasing as .xi., the tip mass offset parameter, is augmented, the other has a tip mass constant but the inertial moment is variable according to a magnitude of .eta., the tip mass offset parament. This study reveals that the effects of inertial moment of a tip mass and larger value of P are specially remarkable even a tip mass is a same.

A Study for Earthquake Parameter of Odaesan Earthquake (오대산지진(2007/01/20)의 지진원 특성에 관한 연구)

  • Kim, Jun-Kyoung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.673-680
    • /
    • 2007
  • The seismic source parameters of the Odaesan earthquake on 20 January 2007, including focal depth, focal mechanism, magnitude, and source characteristics, are analysed using seismic moment tensor inversion. The Green's function for different 3 crust models representing the southern Korean Peninsula are used. Final results show that the event, considering 6 seismic moment tensor elements, is caused by the typical strike slip fault with nearly NNE strike. The focal depth is estimated to be about 11km and 6 seismic moment tensor elements with 7.2% CLVD value shows typical double couple seismic source. The consistent characteristics of the strike and epicenter of the event with Odaesan fault imply that Odaesan earthquake is mainly caused by movement of the Odaesan fault.

A Comparative Case Study of 2016 Gyeongju and 2011 Virginia Earthquakes (2016년 경주지진과 2011년 미국 버지니아지진에 대한 비교 연구 및 사례 분석)

  • Kang, Thomas H.K.;Jeong, Seung Yong;Kim, Sanghee;Hong, Seongwon;Choi, Byong Jeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.443-451
    • /
    • 2016
  • A Gyeongju earthquake in the magnitude of 5.8 on the Richter scale (the moment magnitude of 5.4), which was recorded as the strongest earthquake in Korea, occurred in September 12, 2016. Compared with the 2011 Virginia earthquake, the moment magnitude was slightly smaller and its duration was 3 seconds, much shorter than 10 seconds of the Virginia earthquake, resulting in relatively minor damage. But the two earthquakes are quite similar in terms of the overall scale, unexpectedness, and social situation. The North Anna Nuclear Power Plant, which is a nuclear power plant located at 18 km away from the epicenter of the Virginia earthquake, had no damage to nuclear reactors because the reactors were automatically shut down as the design basis earthquake value was exceeded. Ground accelerations of the 2016 Gyeongju earthquake did not exceed the threshold value but the manual shutdown was carried out so that Wolsong Nuclear Power Site was not damaged. Damaged historic homestead house and masonry structures due to the Virginia earthquake have been repaired, reinforced, and rebuilt based on a long-term earthquake recovery project. Likewise, it will be necessary to carefully carry out an earthquake recovery planning program to improve overall seismic performance and to reconstruct the historic buildings and structures damaged as a result of the Gyeongju earthquake.

Calculation of the Magnitude of the Coulomb Correlation and Magnetic Moment of Cr2Te3 (Cr2Te3에서 쿨롱 상관효과의 크기와 자기모멘트 크기의 계산)

  • Youn, Suk-Joo;Kwon, Se-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2006
  • Electronic and magnetic structure of $Cr_2Te_3$ have been studied, which is a material with complex magnetic structure. Density of states and magnetic moments show better agreement with experiments than LDA if they are obtained with the correlation effect of Cr-d electrons taken into account by the LDA+U method. In these calculations, the magnitude of the correlation effect is found to be 1.7 eV. It is shown that the magnitude of experimental magnetic moments of Cr atoms can be explained if the ferromagnetic states and the ferrimagnetic states have the same energy to be degenerate.

Positive Position Feedback Control of Plate Vibrations Using Moment Pair Actuators (모멘트쌍 액추에이터가 적용된 PPF에 의한 평판의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;You, Ho-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.383-392
    • /
    • 2012
  • This paper reports the active vibration control of plates using a positive position feedback(PPF) controller with moment pair actuators. The equations of motion of the plates under a force and moment pairs are derived and the equations of PPF controllers are formulated. The numerical active control system is then achieved. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics, ie, system stability. Based on the behavior of the gain and the damping ratio of the controller, PPF controller for reduction of the plate vibration can be achieved. Two PPF controllers are designed with their connection in parallel to control the two modes simultaneously. Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the tuned modes can be obtained.