• Title/Summary/Keyword: Moment magnitude

Search Result 239, Processing Time 0.025 seconds

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

An analysis of ground supported farm silo with variable thickness (I) -Part I mechanical characteristics of shell with Variable thickness- (지반과 구조물사이의 상호작용을 고려한 변단면 도통형쉘의 해석 (I) -변단면 쉘의 역학적 특성 (I)-)

  • 조진구;조현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.58-71
    • /
    • 1989
  • This study aims to develop a computerized program for analysis of the ground-supported cylindrical shell structure with step varied section and to find out its mechanical characteri- stics through application of the developed program to the analysis of a ensiled farm silo as a model structure. The thickness of wall and bottom-plate of farm silo is assumed to be step-varied and its detailed structural dimensions are presented in Tab. 1 and 2. Several numerical case studies show that sectional stresses of the sample structures are largely reduced by adopting "varied section" design technique. And, other major results ob- tained from this study are summarize4 as follows ; 1. The variation of wall-thickness has a great influence on bending stresses of wall. Ho- wever, the larger the relative thickness of bottom-plate is, the smaller the influence is. 2. The magnitude of thickness of projecting toe of bottom-plate has negligible effect on sectional stresses 3. The conventional design methodology, which assumes the bottom edge of wall as clam- ped on ground, is proved to be discarded through the numerical analysis. 4. It is found that the "varied section" design technique should get similar effects as in the case of thick bott6m-plate having uniform thickness. 5. The variation of wall-thickness has a considerable effect on the bending stresses of bo- ttom-plate. Especially, this phenomenon is very remarkable in its projecting toe. In some cases. the negative bending moment may be acted on.

  • PDF

A Study on Balanced-Type Oscillating Mole Drainer (II) (Model Test For Vibration) (평형식진동탄환암거천공기의 연구(II) -모수실험 : 진동에 대하여-)

  • 김용환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3962-3969
    • /
    • 1975
  • 1. When the frame of the experimental apparatus was directly fixed on the platform, result from the spectrum density analysis showed that the generated vibration frequecy of the system was nearly-same as the system's own characteristic vibration frequency, 80Hz, in the case of the forcing vibration frequency was 7.5 to 22.5Hz. The reduction ratio of acceleration by balanced type model compare to non-balanced type one was 26.66 percent. 2. When the frame of experimental apparatus was fixed on the platform with putting a shock absorbing rubber between the frame and the platform, the generated vibration frequency of the system was same as forcing vibration frequency. When either frequency or the amplitude of the forcing vibration was increased, the acceleration ratio was increased too. The average reduction ratio was resulted 44.77 per cent. It was concluded that this method of acceleration measurement(the method using a shock absorbing rubber) was a reaonable method, because actual machine will work under such condition. As the vibration frequency and aptitude were increased, the absolute magnitude of acceleration was increased. 3. unbalanced rotating parts, and unbalanced moment of inertia of links were supposed to be causing factors of residual vibration in spite of using the balanced type oscillating mole drainer. This fact suggested that the attachment of the counter weight on the rotating parts which satisfy the condition mw$.$rw=m0e, was necessary. And also, it was expected that the shock absorbing effect could be improved by putting the shock absorbing materials between the moving parts and their supports.

  • PDF

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Signal Detection Based on a Decreasing Exponential Function in Alpha-Stable Distributed Noise

  • Luo, Jinjun;Wang, Shilian;Zhang, Eryang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.269-286
    • /
    • 2018
  • Signal detection in symmetric alpha-stable ($S{\alpha}S$) distributed noise is a challenging problem. This paper proposes a detector based on a decreasing exponential function (DEF). The DEF detector can effectively suppress the impulsive noise and achieve good performance in the presence of $S{\alpha}S$ noise. The analytical expressions of the detection and false alarm probabilities of the DEF detector are derived, and the parameter optimization for the detector is discussed. A performance analysis shows that the DEF detector has much lower computational complexity than the Gaussian kernelized energy detector (GKED), and it performs better than the latter in $S{\alpha}S$ noise with small characteristic exponent values. In addition, the DEF detector outperforms the fractional lower order moment (FLOM)-based detector in $S{\alpha}S$ noise for most characteristic exponent values with the same order of magnitude of computational complexity.

The Analysis of Characteristic of Microstrip Patch Antenna Using Moment Method (모멘트법을 이용한 마이크로스트립 패취 안테나의 특성 해석)

  • Jung, Jae-Hoon;Lee, Hong-Bae;Cheon, Chag-Yul;Jung, Hyun-Kyo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.46-48
    • /
    • 1995
  • An efficient technique for the analysis of a general class of microstrip structures with a substrate is applied in this paper using newly-derived closed-form spatial domain Green's functions employed in conjunction with the Method of Moments(MoM). The computed current distributions on the microstrip structures are used to determine the scattering parameters of microstrip discontinuties and the input impedances of microstrip patch antennas. It is shown that the use of the closed-form Green's functions in the context of the MoM provides a computational advantage in terms of the CPU time by almost two orders of magnitude over the conventional spectral domain approach employing the transformed version of the Green's functions.

  • PDF

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.