• Title/Summary/Keyword: Moment coefficient

Search Result 434, Processing Time 0.022 seconds

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

Aerodynamic modification of setback distance at half height of the tall building to minimize the wind effect

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.193-211
    • /
    • 2022
  • The present study focuses on aerodynamic parameters behaviors and control on the single and double side setback building models at the buildings mid-height. The study is conducted by computational fluid dynamics (CFD) simulation. This study estimates the face wise pressure coefficient on single side setback buildings with a setback range of 20%-50% and double side setback buildings with setbacks ranging from 10%-25%. The polynomial fitted graphs from CFD data predict the Cp on different setback model faces within permissible limit ±13% error. The efficient model obtained according to the minimum drag, lift, and moment consideration for along and across wind conditions. The study guides the building tributary area doesn't control the drag, lift, and moment on setback type buildings. The setback distance takes a crucial role in that. The 20% double side setback model is highly efficient to regulate the moment for both along and across wind conditions. It reduces 17.5% compared to the 20% single side setback and 14% moment compared to the 10% double side setback models. The double side setback building is more efficient to control 4.2% moment than the single side setback building

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

Inertia and Coefficient of Friction Estimation of Electric Motor using Recursive Least-Mean-Square Method (순환 최소자승법을 이용한 전동기 관성과 마찰계수 추정)

  • Kim, Ji-Hye;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.311-316
    • /
    • 2007
  • This paper proposes the algorithm which estimates moment of the inertia and friction coefficient of friction for high performance speed control of electric motor. The proposed algorithm finds the moment of inertia and friction coefficient of friction by observing the speed error signal generated by the speed observer and using Recursive Least-Mean-Square method(RLS). By feedbacking the estimated inertia and estimated coefficient of friction to speed controller and full order speed observer, then the errors of the inertia and coefficient of friction and speed due to the inaccurate initial value are decreased. Inertia and coefficient of friction converge to the actual value within several times of speed changing. Simulation and actual experiment results are given to demonstrate the effectiveness of the proposed parameter estimator.

Effect of corner modifications on 'Y' plan shaped tall building under wind load

  • Sanyal, Prasenjit;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.245-260
    • /
    • 2020
  • Wind load and responses are the major factors which govern the design norms of tall buildings. Corner modification is one of the most commonly used minor shape modification measure which significantly reduces the wind load and responses. This study presents a comparison of wind load and pressure distribution on different corner modified (chamfered and rounded) Y plan shaped buildings. The numerical study is done by ANSYS CFX. Two turbulence models, k-epsilon and Shear Stress Transport (SST), are used in the simulation of the building and the data are compared with the previous experimental results in a similar flow condition. The variation of the flow patterns, distribution of pressure over the surfaces, force and moment coefficients are evaluated and the results are represented graphically to understand the extent of nonconformities due to corner modifications. Rounded corner shape is proving out to be more efficient in comparing to chamfered corner for wind load reduction. The maximum reduction in the maximum force and moment coefficient is about 21.1% and 19.2% for 50% rounded corner cut.

Analysis of Harmonic Vibration of Cracked Rotor (균열회전체의 고조파진동 해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • Harmonic vibration characteristics for the general rotor model having a breathing crack are analyzed. Analyses are performed at the half critical speed ranges. The vibration characteristics are explained by using the additional slope and bending moment at the crack position and the influence coefficient showing the structural dynamic characteristics of the rotor. With the low crack depth the magnitude of the additional slope is kept constant even at the speed range at which the orbit magnitude is very sensitive to the rotational speed change. At this speed range the vibration is affected by the influence coefficient only. As the dynamic bending moment exceeds the static bending moment with the increase of crack depth. the additional slope affects the vibration amplitude of cracked rotor and the crack propagation rate increases.

The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement (차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구)

  • Choi, Sang-Yeol;Kim, Yonung-Tae;Chang, Youn-Hyuck;Ha, Jong-Paek;Kim, Eun-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

Parameter Estimation of Perillyl Alcohol in RP-HPLC by Moment Analysis

  • Row Kyung Ho;Lee Chong Ho;Kang Ji Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • Parameter estimations were made for the reversed-phase adsorption of perillyl alcohol (POH), a potent anti-cancer agent, on octadecylsilyl-silica gel (ODS). The average particle diameter of ODS was about $15\;{\mu}m$, and the particles were packed in the column $(3.9\;\times\;300mm)$. The mobile phase used was a mixture of acetonitrile and water, in which the acetonitrile ranged between 50 and $70\;(v/v\;\%)$. The first absolute moment and the second central moment were determined from the chromatographic elution curves by moment analysis. Experiments were carried out using POH solutions within the linear adsorption range. The fluid-to-particle mass transfer coefficient was estimated using the Wilson-Geankoplis equation. The axial dispersion coefficient and the intra particle diffusivity were determined from the slope and intercept of a plot of H vs $1/u_0$, respectively. The contributions of each mass-transfer step were axial dispersion, fluid-to-particle mass transfer, and intraparticle diffusion.

A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.