• 제목/요약/키워드: Molybdenum disilicide

검색결과 13건 처리시간 0.031초

SHS법에 의한 고온발열체용 $MoSi_2$의 합성 및 소결 (Synthesis and Sinteirng of $MoSi_2$ by SHS Process)

  • 이승재;장윤식;김인술;박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.1085-1091
    • /
    • 1995
  • Molybdenum disilicide (MoSi2) was synthesized from Mo, MoO3, Si and Al powders by self-propagating high temperature synthesis (SHS). The effect of processing parameters such as Mo/MoO3 molar ratio, Ar gas pressure in the reactor and pressing pressure of compacts in synthesis of MoSi2 were investigated. h-MoSi2 was transformed into t-MoSi2 with increasing the Mo/MoO3 mole ratio, and only t-MoSi2 phase was identified above 3.5 : 1 (molar ratio). The synthesized phases did not change with the variation of Ar gas pressure and pressing pressure of compacts. It was found that the combustion temperature was above 2,50$0^{\circ}C$. The products were separated into MoSi2 (s) and $\alpha$-Al2O3 by the difference of their specific grativities. Bending strength, hardness and density of sintered specimen exhibited 82 MPa, 5.368 GPa and 5.43 g/㎤, respectively.

  • PDF

이규화몰리브덴 고온발열체의 전기적 특성 및 제조에 관한 연구 (The Electric Properties And Fabrication of High Temperature Heating Elements of $MoSi_2$)

  • 이후인;심건주;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.605-608
    • /
    • 2001
  • Molybdenum disilicide is widely used for manufacturing high-temperature heating elements owing to its low electrical resistivity, good thermal conductivity, and ability to withstand oxidation at high temperatures. MoSi$_2$heating elements with 4-5wt% of montmorillonite type bentonite as plasticzer and a small amount of Si$_3$N$_4$, ThO$_2$, and B as additives was manufactured. Extruded rods of 3.7mmø and 6.7mmø diameter and 400mm long were fabricated using a vacuum extruder, which were then sinrered for 4-5 hrs. at the max. temperrature of 140$0^{\circ}C$. After 10 minute's oxidation treatment, the diameter of the rod is reduced. The heating elements thus prepared was stable at 1$700^{\circ}C$ and the physical properties such as specific electrical resistivity, hardness, apparent densisty, thermal expansion coefficient, and bending strength were almost identical with thoes of commercial heating elements. In this study we have tried to gain the practical knowledge of manufacturing MoSi$_2$heating elements so that it may be utilized later in a research of pilot scale and eventually be transferred to industry.

  • PDF

첨가제 변화에 따른 $MoSi_2$ 고온발열체의 전기적 특성 (A Study on Electrical $MoSi_2$ High Temperature Heating Elements by Additives)

  • 이후인;한상옥;구경완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1405-1407
    • /
    • 2001
  • It was studied to prepare high temperature heating elements using molybdenum disilicide($MoSi_2$). Molybdenum disilicide is widely used as material for manufacturing high temperature heating elements. $MoSi_2$ heating elements could be used at 1700-1900$^{\circ}C$. However, it is relatively expensive, and its demand depends on import. $MoSi_2$ powders was mixed with 4-5wt% of montmorillonites type bentonite as plasticizer and a small amount of $Si_3N_4$, $ThO_2$, and B as additives to prepare specimen of heating elements. Then, it was extruded, dried, sintered and machined followed by heating test. Effects of sintering conditions and amount of additives were investigated, It was sintered effectively at 1,350$^{\circ}C$ for five hours. Electrical resistivity was decreased with increasing of sintering temperature and time, and related with apparent density of the specimens. It was linealy decreased with increasing of sintered density. The heating elements thus prepared was stable at 1700$^{\circ}C$ and the physical properties such as specific electrical resistivity, hardness, apparent density, thermal expansion coefficient, and bending strength were almost identical with those of commercial heating elements.

  • PDF

Study on Oxidation Behavior of (W,Mo)$Si_2$ Powders in Air at 400, 500 and $600^{\circ}C$

  • Peizhong, Feng;Xuanhui, Qu;Xiaohong, Wang;Farid, Akhtar
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1149-1150
    • /
    • 2006
  • The oxidation of (W,Mo)$Si_2$ powders has been investigated at 400, 500 and $600^{\circ}C$ for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo)$Si_2$ was worse than that of $MoSi_2$, and they showed great changes in mass, volume and colour. Especialy at $500^{\circ}C$, the amount of volume expansion of (W,Mo)$Si_2$ was as high as about $7\sim8$ times and color changed from black to yellow after 4.0h with $MoO_3$, $WO_3$, (W,Mo)$O_3$ and amorphous $SiO_2$ as main reaction products. The mass gain and oxidation rate were relatively slower at $400^{\circ}C$ and $600^{\circ}C$ than that at $500^{\circ}C$.

  • PDF

이규화 몰리브덴-텅스텐의 자전 고온 합성 반응 모델링 (Mathematical Modeling of Self-propagating High Temperature Synthesis of Molybdenum- Tungstenb Disilicide)

  • 연순화;장대규;이철경
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.164-170
    • /
    • 2001
  • 자전고온합성반응법을 이용하여 이규화 몰리브덴-텅스텐($Mo_{1-z}$ , $W_{z}$)$Si_2$을 합성하였다. 조성 (z)을 변화시켜 성형한 원통형 시편에 합성반응 중 전달되는 온도변화를 예측하기 위하여 시편의 중앙에 열전대를 삽입하였다. 반응 선단면이 열전대를 통과할 때 가장 높은 반응온도를 보이고 이것을 단열반응 온도라 간주하였다. 따라서 본 연구에서는 이러한 온도변화를 예측하기 위하여 자전조온합성반응의 모델링을 계시하고자 하였으며, 실험을 통하여 측정한 반응온도 분포곡선의 거동을 비교하였다. 각각의 시료에 대한 실험결과 측정된 반응속도는 약 2.14~1.35mm/sec, 반응온도는 1883K~1507K의 간을 보였다. 두 항 모두 텅스텐의 함량이 증가함에 따라 감소하는 경향을 나타냈으며, 수치해석을 통하여 거의 유사한 반응온도를 얻었다. 시료의 초기온도를 증가시킬 경우 반응온도는 증가함이 예측되었고, z=0.5인 시료에 대하여 반응온도가 1900k 이상이 되기 위해서는 약 800K-900K의 예열이 필요하였다.

  • PDF

수소 환원 공정과 실리콘 확산 침투 처리 공정을 통한 이규화 몰리브덴 코팅층 형성 (Formation of MoSi2 Layer by Hydrogen Reduction and Si-pack Cementation)

  • 전인목;변종민;김세훈;김진우;김영도
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.653-657
    • /
    • 2012
  • In this study, a molybdenum disilicide ($MoSi_2$) coating process was investigated by hydrogen reduction and Si-pack cementation. At first, the metallic Mo coating was carried out by hydrogen reduction of $MoO_3$ powder at $750^{\circ}C$ for various holding times (1, 2, 3 h) in hydrogen atmosphere. A $4.3{\mu}m$ thick metallic molybdenum thin film was formed at 3 h. $MoSi_2$ was obtained by Si-pack cementation on molybdenum thin film through hydrogen reduction processing. It was carried out using $Si:Al_2O_3:NH_4Cl=5:92:3$ (wt%) packs at $900^{\circ}C$ for various holding times (30, 60, 90 min) in Ar atmosphere. When the holding time was 90 min, a $MoSi_2$ layer was coated successfully and a $15.4{\mu}m$ thickness was observed.

연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조 (Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process)

  • 송인혁;윤중열;김해두
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.62-68
    • /
    • 2004
  • 본 연구에서는 SHS 공정에 의하여 기공의 크기를 조절함으로서 전기저항 발열 특성을 가지는 다공성 $MoSi_2$를 제조하는 공정에 관하여 연구하였다. 결함이 억제된 다공질 재료를 제조하기 위하여 Si 함량 변화 및 예열 공정을 실시하였으며, 성형체 제조에 사용되는 Mo 분말의 크기 변화에 따른 가공 형성 거동에 대하여 연구하였다. 실험 결과 합성된 $MoSi_2$ 입자의 크기는 Mo 입자의 크기와는 관계없이 연소 합성시 발열되는 발열양에 의해 좌우되었으며, 기공의 크기는 Mo 입자의 크기에 따라 결정되었다. 또한 가공 경사 $MoSi_2$ 다공질 재료를 만들기 위하여 150-300${\mu}m$ Mo 분말과 4-5${\mu}m$ Mo 분말을 단계별로 5층으로 혼합하여 합성한 결과 거시적으로 순차적인 기공 크기 분포를 나타내었으며, 이를 통하여 포집 효율등이 우수한 다공성 발열체 재료의 제조가 가능하였다.

반응소결에 의하여 제조된 $SiC/MoSi_2$ 복합체의 산화 거동 (Oxidation Behavior of $SiC/MoSi_2$ Composites Prepared by Reaction Sintering Method)

  • 양준환;한인섭;우상국;서동수
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1588-1598
    • /
    • 1994
  • The SiC/MoSi2 composite materials were fabricated by infiltrating the mixture of molybdenum disilicide and metal silicon(MoSi2+Si=100) to a porous compact of silicon carbide and graphite under the vacuum atmosphere of 10-1 torr. The specimen were oxidized in dry air under 1 atm at 130$0^{\circ}C$~150$0^{\circ}C$ for 240 hours. The oxidation behavior was evaluated by the weight gain and loss per unit area of the oxidized samples. Also, SEM and XRD analysis of the oxidized surface of the samples were carried out. With increasing the MoSi2 content and oxidation temperature, the passive oxidation was found. The trend of weight gain of all samples was followed the parabolic rate law with the formation of a protective layer of cristobalite on the surface.

  • PDF

Neutron Diffraction Analysis of Tungsten-Molybdenum-Disilicide Powders Formed by Self-propagating High Temperature Synthesis

  • Choi, Y.;Kim, Y.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1325-1326
    • /
    • 2006
  • Tungsten-molydiside $W_xMo_{1-x}Si_2$ was synthesized by self-propagating high temperature synthesis (SHS). The SHS product with the initial composition of (0.5Mo+0.5W+2Si) contains 23.9% $MoSi_2$, 40.89% $WSi_2$ with remaining 9.11% Mo, 9.16% Si and 16.94%W. Lattice parameters of the $MoSi_2$ and $WSi_2$ determined by Rietvelt analysis were a=0.3206 nm, c=0.7841 nm and a=0.3212 nm, c=0.7822 nm, respectively.

  • PDF

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.