DOI QR코드

DOI QR Code

Formation of MoSi2 Layer by Hydrogen Reduction and Si-pack Cementation

수소 환원 공정과 실리콘 확산 침투 처리 공정을 통한 이규화 몰리브덴 코팅층 형성

  • Jeon, In Mok (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se Hoon (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Jin Woo (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 전인목 (한양대학교 신소재공학과) ;
  • 변종민 (한양대학교 신소재공학과) ;
  • 김세훈 (한양대학교 신소재공학과) ;
  • 김진우 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2012.04.13
  • Published : 2012.09.25

Abstract

In this study, a molybdenum disilicide ($MoSi_2$) coating process was investigated by hydrogen reduction and Si-pack cementation. At first, the metallic Mo coating was carried out by hydrogen reduction of $MoO_3$ powder at $750^{\circ}C$ for various holding times (1, 2, 3 h) in hydrogen atmosphere. A $4.3{\mu}m$ thick metallic molybdenum thin film was formed at 3 h. $MoSi_2$ was obtained by Si-pack cementation on molybdenum thin film through hydrogen reduction processing. It was carried out using $Si:Al_2O_3:NH_4Cl=5:92:3$ (wt%) packs at $900^{\circ}C$ for various holding times (30, 60, 90 min) in Ar atmosphere. When the holding time was 90 min, a $MoSi_2$ layer was coated successfully and a $15.4{\mu}m$ thickness was observed.

Keywords

References

  1. K. Kuchino, K. kurokawa, T. Shibayama, and H. Takagashi, Vacuum. 73, 623 (2004). https://doi.org/10.1016/j.vacuum.2003.12.081
  2. S. M. Tuominen, J. of less-common metals 81, 249 (1981). https://doi.org/10.1016/0022-5088(81)90031-X
  3. E. K. Nyutu, M. A. Kmetz, and S. L. Suib, Surf. Coat. Technol. 200, 3980 (2006). https://doi.org/10.1016/j.surfcoat.2005.02.212
  4. S. Hou, Mater. Sci. Eng. A 518, 108 (2009). https://doi.org/10.1016/j.msea.2009.04.026
  5. G. Reisel, Surf. Coat. Technol. 146, 19 (2001).
  6. A. Hidouci, Mater. Sci. Eng. A 252, 17 (1998). https://doi.org/10.1016/S0921-5093(98)00659-5
  7. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim, and Y. D. Kim, Chem. Vapor Depos. 15, 199 (2009). https://doi.org/10.1002/cvde.200906738
  8. T. S. Cho, S. H. Kim, and Y. D. kim, Korean J. Met. Mater. 49, 187 (2011).
  9. J. K. Yoon, J. Electrochem Soc. 151, B309 (2004). https://doi.org/10.1149/1.1710896
  10. T. K. Redden, Trans. AIME 242, 1695 (1968).
  11. W. V. Schulmeyer and H. M. Ortner, Int. J. Refract. Met. Hard. Mater. 20, 261 (2002). https://doi.org/10.1016/S0263-4368(02)00029-X
  12. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim, and Y. D. Kim, Chem. Vapor Depos. 15, 199 (2009). https://doi.org/10.1002/cvde.200906738
  13. Y. J. Lee, W. T. Nichols, D. G. Kim, and Y. D. Kim, J. Phys. D: Appl. Phys. 42, 115419 (2009). https://doi.org/10.1088/0022-3727/42/11/115419
  14. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim, and Y. D. Kim, Appl. Phys. A 97, 237 (2009). https://doi.org/10.1007/s00339-009-5209-z
  15. W. V. Schulmeyer and H. M. Ortner, Int. J Refract. Met. Hard. Mater. 20, 261 (2002). https://doi.org/10.1016/S0263-4368(02)00029-X
  16. J. K. Yoon, J. Y. Byun, J. S. Kim, and C. S. Choi, J. Kor. Inst. Met. & Mater. 36, 59 (1998).
  17. J. K. Yoon, J. Kor. Inst. Met. & Mater. 32, 3 (1994).
  18. P. R. Gage and R. W. Bartlett, Trans. Metal. Soc. AIME 233, 832 (1965).