• 제목/요약/키워드: Molybdenum Disulfide

검색결과 45건 처리시간 0.022초

2차원 MoS2 물질 기반의 전자소자 연구 (Introduction to research of atomically thin MoS2 and its electrical properties)

  • 이탁희;김태영;조경준;박진수
    • 진공이야기
    • /
    • 제3권1호
    • /
    • pp.9-15
    • /
    • 2016
  • Molybdenum disulfide ($MoS_2$), which has 0.65 nm-thick atomic layer, can be easily separated layer by layer due to weak van der Waals interactions in out-of-plane direction. ($MoS_2$), has a good potential in nanoelectronics, because it has high electrical mobility and On/Off ratio. Its band gap energy changes from indirect to direct band gap energy as it goes from bulk to monolayer. Therefore, atomically thin ($MoS_2$), is widely studied in academic and engineering fields. Here, we introduce the research of atomically thin $MoS_2$ and discuss the research directions.

엔진오일의 혼합첨가제에 따른 윤활특성에 관한 연구 (A Study on the Lubricational Characteristics with Compound Additives of Engine Oil)

  • 이봉구;오성모
    • Tribology and Lubricants
    • /
    • 제11권1호
    • /
    • pp.50-57
    • /
    • 1995
  • When engine oil is used under severe running condition, the Lubricational characteristics is very important. I have studied the Lubricational characteristics with Compound Additives of engine oil for the Falex wear test machine. Adding detergent (Ca-phenate) to engine oil, the seizure is more improved than in case of non-adding, and adding Zn-DTP (Zinc dialkyl dithio phosphate), the extreme pressure property is excellent at the high load. But when the PTFE (Polytetra Fluoro Ethylene) and MoS$_{2}$ (Molybdenum disulfide) are added, the temperature characteristics and the anti-wear property become excellent because the stability can be maintained in a high temperature. The result are as follows, it can be improved that when the compound of the Ca-phenate and Zn-DTP, MoS$_{2}$, PTFE, etc. was added to engine oil, the lubrication characteristics become better. It is argued that it is improved because of excellence of the anti-wear, the extreame pressure properties and the heat stability.

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.

고분자/$MoS_2$ 복합재료의 마찰 및 마모특성 (Characteristics of Friction and Wear of Polymer/MoS$_2$ Composites)

  • 문탁진;윤호규
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.12-20
    • /
    • 1989
  • The friction and wear behavior of molybdenum disulfide filled polymer composites sliding against metal has been investigated using pin-on-disc machine and microscope. The observed wear rates were reduced by the addition of MoS$_2$ to nylon and this can be attributed to the homogenous transfer of MoS$_2$ to the counteddace thereby modifying sliding conditions. The friction of filled and unfilled nylon was increased with increasing sliding speed, and the catastropic wear rate was occurred at high normal load. This have been explained by thermal degradation. In the case of HDPE, however, the wear rate was not always reduced by the addition of MoS$_2$ and the influence of MoS$_2$ was mainly even the opposite. Filled and unfilled HDPE had lower values of friction and wear rate than those of nylon. Micrographs appeared that the delamination of the worn surface in nylon/MoS$_2$ composite occurred and revealed that the worn surface of HDPE presented a number of characteristic features as wear grooves, pulls, and smears and crescents.

Growth and Structural Characterization of Single Layer Dichalcogenide $MoS_2$

  • Hwang, Jae-Seok;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.575-575
    • /
    • 2012
  • Synthesis of novel two dimensional materials has gained tremendous attention recently as they are considered as alternative materials for replacing graphene that suffers from a lack of bandgap, a property that is essential for many applications. Single layer molybdenum disulfide ($MoS_2$) has a direct bandgap (1.8eV) that is promising for use in next-generation optoelectronics and energy harvesting devices. We have successfully grown high quality single layer $MoS_2$ by a facile vapor-solid transport route. As-grown single layer $MoS_2$ was carefully characterized by using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy and electrical transport measurement. The results indicate that a high quality single layer $MoS_2$ can be successfully grown on silicon substrate. This may open up great opportunities for the exploration of novel nanoelectronic devices.

  • PDF

MoS2 두께 변화에 따른 MoS2/p-Si 광센서 특성 연구 (MoS2 Thickness-Modulated MoS2/p-Si Photodetector)

  • 김홍식;김준동
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.145-149
    • /
    • 2017
  • Transition metal dichalcogenides (TMDs) have attracted much attention because of their excellent optical and electrical properties, which are the applications of next generation photoelectric devices. In this study, $MoS_2$, which is a representative material of TMDs, was formed by magnetic sputtering method and surface changes and optical characteristics were changed with thickness variation. In addition, by implementing the photodetector of $MoS_2/p-Si$ structure, it was confirmed that the change of the electrical properties rather than the change of the optical properties according to the thickness change of $MoS_2$ affects the photoresponse ratio of the photodetector. This result can be used to fabricate effective photoelectric devices using $MoS_2$.

Semi-analytical Modeling of Transition Metal Dichalcogenide (TMD)-based Tunneling Field-effect Transistors (TFETs)

  • Huh, In
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.368-372
    • /
    • 2016
  • In this paper, the physics-based analytical model of transition metal dichalcogenide (TMD)-based double-gate (DG) tunneling field-effect transistors (TFETs) is proposed. The proposed model is derived by using the two-dimensional (2-D) Landauer formula and the Wentzel-Kramers-Brillouin (WKB) approximation. For improving the accuracy, nonlinear and continuous lateral energy band profile is applied to the model. 2-D density of states (DOS) and two-band effective Hamiltonian for TMD materials are also used in order to consider the 2-D nature of TMD-based TFETs. The model is validated by using the tight-binding non-equilibrium Green's function (NEGF)-based quantum transport simulation in the case of monolayer molybdenum disulfide ($MoS_2$)-based TFETs.

  • PDF

Simulation of Source/Drain Doping Effects and Performance Analysis of MoS2 Transistor

  • Kim, Chul-min;Park, Il Hoo;Lee, Kook Jin
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.285-287
    • /
    • 2016
  • 이황화 몰리브덴(Molybdenum disulfide: $MoS_2$)을 채널(Channel) 물질로 이용하여 metal-oxide-semiconductor(MOS) 구조를 제작하고, 효율적인 제작과정을 제시하였고 특히, Source/Drain의 Doping concentration을 조절하여 효과적인 $MoS_2$ Transistor를 제작 및 시뮬레이션 하였다. 그 후 여러 MOSFET의 특성 분석을 통하여 소자로서의 기능을 확인해보았다. 그리고 특히 채널의 전기적인 특성을 분석하고 채널 내 그리고 contact 사이의 저항 및 mobility의 특성을 알아보았는데, 그 중 Source/Drain Doping Effect와 performance 분석을 통해, 최적화된 $MoS_2$ Transistor를 찾아보았다.

  • PDF

Physical Properties of MoS2

  • 이창구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.100-100
    • /
    • 2013
  • Among recently discovered 2-dimensional materials, molybdenum disulfide has fascinating physical properties. It is atomically thin and is a semiconductor with with a similar level of bandgap with silicon. Especially, its properties get interesting when it becomes thinner. Its bandgap goes through bandgap transition from indirect to direct gap. Also its gap size increases as its thickness decreases. In this talk, I am going to present our recent work on characterization of its electrical and optical properties. We used Raman and PL spectroscopy to observe its property dependence on thickness. We fabricated electrical devices to study optimal condition for MoS2 devices. Also we synthesized large-area MoS2 films for devices applications.

  • PDF

Wear Characteristics and Thermal Stability of PA66/silane treated MoS2 Composites

  • Nam, Ki-dong;Gu, Bo-ram;Ryu, Sung-hun
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.339-346
    • /
    • 2020
  • We functionalized a wear-resistant carbon-based MoS2 filler to solve its limited wear condition problem. The filler exhibits excellent lubricative properties. The surface modification of MoS2 was carried out using a (3-glycidyloxypropyl)trimethoxysilane (GPTMS) silane coupling agent to improve the low compatibility and dispersibility of the filler that generally degrade the performance of composites. A silane coupling agent was employed for the functionalization of MoS2, and its effect on the wear resistance of MoS2/Polyamide-6,6 was investigated. The silanization of MoS2 was identified by contact angle analysis and Fourier-transform infrared, energy dispersive X-ray, and X-ray photoelectron spectroscopies. The wear resistance of the composite was found to be improved significantly by the surface functionalization of MoS2.