• Title/Summary/Keyword: Molten state

Search Result 139, Processing Time 0.027 seconds

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Modified Agglomerated Film Model Applied to a Molten Carbonate Fuel Cell Cathode (실측자료를 이용한 Agglomerated Film Model의 용융탄산염 연료전지 산소전극 성능모사)

  • 임준혁;김태근
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.593-603
    • /
    • 1996
  • A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrode- electrolyte interface. The model predicts steady-state cell performance, given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 c$m^2$ cell. A fair correspondence is observed.

  • PDF

Xenon in molten salt reactors: The effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction

  • Price, Terry J.;Chvala, Ondrej;Taylor, Zack
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Xenon behaves differently in molten salt reactors (MSRs) compared to solid fuel reactors. This behavior needs exploring due to the large reactivity effect of the 135Xe isotope, given the current interest in MSR power plant development for commercial deployment. This paper focuses on select topics in xenon transport, reviews relevant past works, and proposes specific research questions to advance the state of the art in each of the focus areas. Specifically, the paper discusses the issue of xenon solubility in MSRs, the behavior of particulates circulating in MSR fuel salt and its influence on the xenon transport, the possibility of ionization of xenon atoms which changes its effective size and thus affects its mass transport, and finally the issue of circulating void fraction and how it is measured. This work presents specific recommendations for MSR designers to research the limits of Henry's law validity, circulating particulate scrubbers, validity of mass transport coefficients in high radiation fields, and the effects of pump speed on circulating void fraction.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

Electrochemical Impedance Spectroscopy and Cyclic Voltammetry Methods for Monitoring SmCl3 Concentration in Molten Eutectic LiCl-KCl

  • Shaltry, Michael R.;Allahar, Kerry N.;Butt, Darryl P.;Simpson, Michael F.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • Molten salt solutions consisting of eutectic LiCl-KCl and concentrations of samarium chloride (0.5 to 3.0 wt%) at 500℃ were analyzed using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV technique gave the average diffusion coefficient for Sm3+ over the concentration range. Equipped with Sm3+ diffusion coefficient, the Randles-Sevcik equation predicted Sm3+ concentration values that agree with the given experimental values. From CV measurements; the anodic, cathodic, and half-peak potentials were identified and subsequently used as a parameter to acquire EIS spectra. A six-element Voigt model was used to model the EIS data in terms of resistance-time constant pairs. The lowest resistances were observed at the half-peak potential with the associated resistance-time constant pairs characterizing the reversible reaction between Sm3+ and Sm2+. By extrapolation, the Voigt model estimated the polarization resistance and established a polarization resistance-concentration relationship.

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.

Dissolution behavior of SrO into molten LiCl for heat reduction in used nuclear fuel

  • Kang, Dokyu;Amphlett, James T.M.;Choi, Eun-Young;Bae, Sang-Eun;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1534-1539
    • /
    • 2021
  • This study reports on the dissolution behavior of SrO in LiCl at varying SrO concentrations from low concentrations to excess. The amount of SrO dissolved in the molten salt and the species present upon cooling were determined. The thermal behavior of LiCl containing various concentrations of SrO was investigated. The experimental results were compared with results from the simulated results using the HSC Chemistry software package. Although the reaction of SrO with LiCl in the standard state at 650 ℃ has a slightly positive Gibbs free energy, SrO was found to be highly soluble in LiCl. Experimentally determined SrO concentrations were found to be considerably higher than those present in used nuclear fuel (<2 g/kg). As Sr-90 is one of the most important heat-generating nuclides in used nuclear fuel, this finding will be impactful in the development of fast, simple, and proliferation-resistant heat reduction processes for used nuclear fuel without the need for separating nuclear materials. Heat reduction is important as it decreases both the volume necessary for final disposal and the worker handling risk.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

Thermal study of the emergency draining tank of molten salt reactor

  • C. Peniguel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.793-802
    • /
    • 2024
  • In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.

Corrosion characteristics of separator for MCFC (용융탄산염형 연료전지의 분리판 부식특성)

  • 김귀열
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.831-835
    • /
    • 1996
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650[.deg. C] have many problem. Systematic investigation on corrosion behavior of Fe-based Cr has been done in ($62{\times}38$)mol % (Li+K)$CO_3$ melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Cr content, and this was attributed to the formation of $LiCrO_2$ layer at the surface .

  • PDF