• Title/Summary/Keyword: Molten LiCl-KCl

검색결과 59건 처리시간 0.024초

Interaction of Rare Earth Chloride Salts to Alumina and Mullite in LiCl-KCl at 773 K

  • Horvath, David;Warmann, Stephen;King, James;Marsden, Kenneth;Hoover, Robert
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.337-346
    • /
    • 2020
  • Two commonly used ceramics in molten salt research are alumina and mullite. The two ceramics were exposed to a combination of rare earth chlorides (YCl3, SmCl3, NdCl3, PrCl3, and CeCl3; each rare earth chloride of 1.8 weight percent) in LiCl-KCl at 773 K for approximately 13 days. Scanning electron microscopy with wave dispersion spectra was utilized to investigate a formation layer or deposition of rare earths onto the ceramic. Only the major constituents of the ceramics (Al, Si, and O2) were observed during the wave dispersion spectra. X-ray fluorescence was used as well to determine concentration changes in the molten salt as a function of ceramic exposure time. This study shows no evidence of ionic exchange or layer formation between the ceramics and molten chloride salt mixture. There are signs of surface tension effects of molten salt moving out of the tantalum crucible into secondary containment.

LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구 (A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode)

  • 이애리;박병기
    • 방사성폐기물학회지
    • /
    • 제15권4호
    • /
    • pp.313-320
    • /
    • 2017
  • LiCl-KCl 용융염에서 광학적으로 투명한 텅스텐 망으로 제작된 작업전극에 대해 사마륨의 전기화학적 거동을 Cyclic voltammetry와 Potential step chronoabsorptometry의 전기화학적 및 분광전기화학적 방법으로 조사하였다. Cyclic voltammogram으로 결정된 $Sm^{3+}/Sm^{2+}$의 산화환원 반응의 가역성을 기반으로 형식전위와 확산계수를 계산하여 각각 -1.99 V vs. $Cl_2/Cl^-$$2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$를 얻었다. 작업 전극에 -1.5 V vs. Ag/AgCl (wt%)로 전압을 인가하여 측정한 Chronoabsorptometry를 통해 사마륨 이온의 특성 파장으로 $Sm^{3+}$에 대해 408.08 nm, $Sm^{2+}$에 대해 545.62 nm를 확인하였다. Voltammogram에서 얻은 환원 피크 전압과 산화 피크 전압을 이용하여 Potential step chronoabsorptometry를 수행하였다. 545.63 nm의 흡광피크 값을 분석하여 $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$의 확산계수를 얻었으며 이 값은 동일한 온도에서 Cyclic voltammtry 분석으로 얻은 값과 큰 차이를 보이지 않았다. 실험결과로부터 고온 용융염에서 광학적으로 투명한 작업전극을 이용한 분광전기화학적 방법이 용융염에 용해된 이온의 종류를 확인하며 전기화학적 거동을 조사하는데 유용한 도구로 활용될 수 있음을 확인하였다.

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅 (Chromium Carbide Coating on Diamond Particle Using Molten Salts)

  • 정영우;김화정;안용식;최희락
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.423-427
    • /
    • 2018
  • For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

EPR Investigation on a Quantitative Analysis of Eu(II) and Eu(III) in LiCl/KCl Eutectic Molten Salt

  • Park, Yong-Joon;Kim, Tack-Jin;Cho, Young-Hwan;Jung, Yong-Ju;Im, Hee-Jung;Song, Kyu-Seok;Jee, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.127-129
    • /
    • 2008
  • EPR spectroscopic technique was applied for a quantitative analysis of Eu(II) for a speciation of europium in a LiCl-KCl eutectic melt. By adopting the first absorption line of each isotopes (151Eu and 153Eu), a calibration plot was obtained. The calibration of the EPR intensity shows a good linearity according to the amount of Eu(II). The EPR intensity was identified to increase proportionally with a decrease of the attenuation parameter for EPR microwave power. The fluorescence technique was used qualitatively to find whether either of Eu(II) or Eu(III) ions exists in a molten salt sample. The ICP-AES technique was also adopted to determine the total concentration of europium in the sample, since EPR is only sensitive for detecting the Eu(II) ion. The extent of the reduction of Eu(III) in the LiCl-KCl eutectic melt at 723 K was determined by using this technique.

Examination on Electrochemical Behaviors of Niobium Chloride in Molten LiCl-KCl by Cyclic Voltammetry

  • Jeong, Gwan Yoon;Park, Jaeyeong
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2018년도 추계학술논문요약집
    • /
    • pp.299-300
    • /
    • 2018
  • Electrochemical behaviors of Nb ion in the $LiCl-KCl-NbCl_5$ molten salt were examined. Cyclic voltammograms with different scan rates and scan range at $450^{\circ}C$ showed possible electrochemical redox reactions which were identified by comparison to the literature data. Peak potentials for each redox reaction were consistent with the literature, but some redox reactions were not clearly defined due to the formation of subchloride compound in chloride salt. The electrochemical behaviors of Nb ion related to the subchloride formation as well as Nb metal deposition will be investigated for the future work.

  • PDF