• Title/Summary/Keyword: Molecule-molecule interaction

Search Result 271, Processing Time 0.021 seconds

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo;Gim, Yeongrok;Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1771-1778
    • /
    • 2013
  • For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

Intrinsic Viscosity and Unperturbed Dimension of Poly(DL-lactic acid) Solution

  • Lee, Jae-Sung;Kim, Sung-Chul;Lee, Hwan-Kwang
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.631-636
    • /
    • 2008
  • The intrinsic viscosities were determined for poly(DL-lactic acid) (PDLLA) solutions in 1,2-dialkyl phthalate at temperatures ranging from 30 to $60^{\circ}C$. A series of dialkyl phthalate, in which the alkyl group was changed from methyl to propyl, was used as the solvent to control the solvent quality systematically. The intrinsic viscosity of the PDLLA solution was higher in the better quality solvent, with a higher molecular weight of PDLLA, and at lower temperatures. The unperturbed dimensions of the PDLLA molecule and polymer-solvent interaction parameter of PDLLA in dialkyl phthalate were deduced using extrapolation methods based on the temperature-dependent intrinsic viscosities. Slight shrinkage in the unperturbed chain dimension was observed, which resulted from a change in polymer conformation with temperature. It was also observed that the polymer-solvent interaction became more favorable with the dialkyl phthalate containing a shorter alkyl chain.

Conformational Study of Y-Base in Yeast tRNA$^{phe}$

  • Moon, Myung-Jun;Jhon, Mu-Shik;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.133-139
    • /
    • 1983
  • To understand the importance of Y-base adjacent to the anticodon stabilizing codon-anticodon interaction, a study has been undertaken for the model compound involving the interaction between Y-base and anticodon as well as the participation of water molecule by calculating the conformational free energy using an empirical potential function. We restrict our analysis to sites directly associated with Y-base by varying only the backbone torsion angles of Y-base. The hydration and $Mg^{+2}$ binding effects on the conformational stability of Y-base are calculated and discussed. The free Y-base is proved to be less stable than the hydrated one. The free energy change due to the hydration of Y-base amounts to -119.5 kcal/mole, in which the conformational energy change is -142.4 kcal/mole and the configurational entropy change is -76.9 e. u. It is found that the water molecules bound to Y-base and $Mg^{+2}$ contribute to the conformation of Y-base dominantly.

The Crystal Structure of Metoclopramide

  • Shin, Whan-chul;Chang, Tai-Sik;Koo, Chung-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.123-127
    • /
    • 1983
  • The crystal structure of metoclopramide, $C_14H_22ClN_3O_2$, has been determined by X-ray diffraction techniques using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with Mo $K\alpha$ radiation from a crystal with space group symmetry $P{\overline{1}}$ and unit cell parameters a = 7.500(1), b = 8.707(2), c = 13.292(2) ${\AA}$; ${\alpha}$ = 101.70(2), ${\beta}$ = 81.20(2), and ${\gamma}$ = $114.90(l)^{\circ}$. The sructure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.055 for the 1524 observed reflections. The bent overall-conformation of the molecule seems to be determined mainly by the bifurcated intramolecular hydrogen bond from the amide nitrogen atom to the methoxy oxygen and the amine nitrogen atoms. The crystal packing consists of the hydrogen bonds, ${\pi}-{\pi}$ interaction and hydrophobic interaction.

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Conformation of Single Stranded Poly(dA) and Its Interaction with 4',6-Diamidino-2-phenylindole

  • 정갑선;김명순;이길준;조태섭;Kim, Seog K.;이세윤
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.510-514
    • /
    • 1997
  • We studied the interaction of 4',6-diamidino-2-phenylindole (DAPI) with single stranded poly(dA) using optical spectroscopic methods, including absorption, circular dichroism (CD), and fluorescence spectroscopy. The temperature-dependent conformation of poly(dA) was also investigated. The conformation of poly(dA) varied with temperature, which is explained by the stacking-destacking process of the adenine bases, resulting from the sugar conformation. The hypochromicity and red-shift in the absorption spectroscopy, the lack of CD change in the drag absorption region, and the fluorescence behavior, especially a great accessibility of the I2 quencher to the poly(dA)-bound DAPI, suggest that DAPI binds to the outside of poly(dA). The Job plot for the DAPI-poly(dA) mixture demonstrated that a stoichiometry of one DAPI molecule binds to the one phosphate of poly(dA).

The Importance of Halogen Bonding: A Tutorial

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.195-197
    • /
    • 2012
  • Halogen atoms in a molecule are traditionally considered as electron donors, since they have unshared electrons. Normally when they are bonded, there are three lone pair electrons. These lone pairs can function as Lewis bases. However, when they are bound to electron withdrawing groups, they can act as Lewis acids. Since the situation is similar hydrogen bonding (HB), this type of interaction is named as halogen bonding (XB). This mainly comes from the uneven distribution of electron density around the halogen atoms. Since the electron density around halogen atom opposite to ${\sigma}$-bond is depleted, its electropositive region is called ${\sigma}$-hole. This ${\sigma}$-hole can attract halogen bond acceptors, requiring more stringent directionality compared to HB. Since this interaction mainly comes from electrostatic origin, the geometry tends to be linear. Since the XB energy is comparable to corresponding HB. Still in its infancy, XB shows a broad range of applicability, with potentially more useful properties, compared to corresponding HB.

Chiral Recognition in Gas chromatographic Resolution of Amino -$^1H\;and^{13}C$ Nuclear magnetic resonance studies of hydrogen bonding in dinmide chiral stationary phases-

  • Park, Man-Ki;Yang, Jeong-Sun;Sohn, Dong-Hwan;Lee, Mi-Young
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.58-61
    • /
    • 1989
  • Studies of selectivity of hydrogen bond formation in chiral solute-solvent systems have been performed by $^1H\;and\;^{13}C$ nuclear magnetic resonance techniques. These data are correlated with the results of gas chromatographic investigations of the same systems. Interactions between the optically active solvent(N-(N-benzoyl-L-amino acid)-anilide) and optically active solute (N-trifluoroacetyl -L-alanyl isopropyl ester) were examined. NMR evidence indicated that hydrogen bonding interaction occurred between two N-H portion and on peptidyl carbonyl portion in stationary phase and solute molecule on three points. The association constants of solvent-solute interaction were calculated and the structure of the diastereomeric association complex between N-(N-benzoyl-L-valyl)-anilide and N-TFA-L-alanyl isopropyl ester was proposed.

  • PDF

Interaction at the nanoscale of fundamental biological molecules with minerals

  • Valdre, Giovanni;Moro, Daniele;Ulian, Gianfranco
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.133-151
    • /
    • 2013
  • The availability of advanced nanotechnological methodologies (experimental and theoretical) has widened the investigation of biological/organic matter in interaction with substrates. Minerals are good candidates as substrates because they may present a wide variety of physico-chemical properties and surface nanostructures that can be used to actively condense and manipulate the biomolecules. Scanning Probe Microscopy (SPM) is one of the best suited techniques used to investigate at a single molecule level the surface interactions. In addition, the recent availability of high performance computing has increased the possibility to study quantum mechanically the interaction phenomena extending the number of atoms involved in the simulation. In the present paper, firstly we will briefly introduce new SPM technological developments and applications to investigate mineral surfaces and mineral-biomolecule interaction, then we will present results on the specific RNA-mineral interaction and recent basics and applicative achievements in the field of the interactions between other fundamental biological molecules and mineral surfaces from both an experimental and theoretical point of view.

Orbital Interactions in$ BeC_{2}H_{2}\;and\;LiC_{2}H_{2}$ Complexes

  • Ikchoon Lee;Jae Young Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1993
  • Ab initio calculations are carried out at the 6-311G$^{**}$ level for the $C_{2v}$ interactions of Be and Li atoms with acetylene molecule. The main contribution to the deep minima on the $^3B_2\;BeC_2H_2\;and\;^2B_2 LiC_2H_2$ potential energy curves is the b_2\;(2p(3b_2)-l{\pi}_g^*(4b_2))$ interaction, the $a_1\;(2s(6a_1)-I{\pi}_u(5a_1))$ interaction playing a relatively minor role. The exo deflection of the C-H bonds is basically favored, as in the $b_2$ interaction, due to steric crowding between the metal and H atoms, but the strong in-phase orbital interaction, or mixing, of the $a_1$ symmetry hydrogen orbital with the $5a'_1,\;6a'_1,\;and\;7a'_1$ orbitals can cause a small endo deflection in the repulsive complexes. The Be complex is more stable than the Li complex due to the double occupancy of the 2s orbital in Be. The stability and structure of the $MC_2H_2$ complexes are in general determined by the occupancy of the singly occupied frontier orbitals.