Browse > Article

Intrinsic Viscosity and Unperturbed Dimension of Poly(DL-lactic acid) Solution  

Lee, Jae-Sung (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Kim, Sung-Chul (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Lee, Hwan-Kwang (Department of Cosmetic Science, Chungwoon University)
Publication Information
Macromolecular Research / v.16, no.7, 2008 , pp. 631-636 More about this Journal
Abstract
The intrinsic viscosities were determined for poly(DL-lactic acid) (PDLLA) solutions in 1,2-dialkyl phthalate at temperatures ranging from 30 to $60^{\circ}C$. A series of dialkyl phthalate, in which the alkyl group was changed from methyl to propyl, was used as the solvent to control the solvent quality systematically. The intrinsic viscosity of the PDLLA solution was higher in the better quality solvent, with a higher molecular weight of PDLLA, and at lower temperatures. The unperturbed dimensions of the PDLLA molecule and polymer-solvent interaction parameter of PDLLA in dialkyl phthalate were deduced using extrapolation methods based on the temperature-dependent intrinsic viscosities. Slight shrinkage in the unperturbed chain dimension was observed, which resulted from a change in polymer conformation with temperature. It was also observed that the polymer-solvent interaction became more favorable with the dialkyl phthalate containing a shorter alkyl chain.
Keywords
poly(lactic acid); polymer solution; intrinsic viscosity; unperturbed dimension;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Z. Gugala and S. Gogolewski, J. Biomed. Mater. Res., 49, 183 (2000)   DOI   ScienceOn
2 D. A. Brant, A. E. Tonelli, and P. J. Flory, Macromolecules, 2, 228 (1969)   DOI
3 K. Park, H. J. Jung, J. J. Kim, K. D. Ahn, D. K. Han, and Y. M. Ju, Macromol. Res., 14, 552 (2006)   과학기술학회마을   DOI
4 J. S. Lee, H. K. Lee, and S. C. Kim, Polymer, 45, 4491 (2004)   DOI   ScienceOn
5 J. S. Lee, H. K. Lee, J. Y. Kim, S. H. Hyon, and S. C. Kim, J. Appl. Polym. Sci., 88, 2224 (2003)   DOI   ScienceOn
6 G. C. Berry, J. Chem. Phys., 46, 1338 (1967)   DOI
7 J. Tams, C. A. P. Joziasse, R. R. M. Bos, F. R. Rozema, D. W. Grijpma, and A. J. Pennings, Biomaterials, 16, 1409 (1995)   DOI   ScienceOn
8 K. Y. Cai, K. D. Yao, Y. L. Cui, Z. M. Yang, X. Q. Li, H. Q. Xie, T. W. Qing, and L. B. Gao, Biomaterials, 23, 1603 (2002)   DOI   ScienceOn
9 P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953
10 R. K. Kulkarni, E. G. Moore, A. F. Hegyeli, and F. Leonard, J. Biomed. Mater. Res., 5, 169 (1971)
11 W. H. Stockmayer and M. Fixman, J. Polym. Sci. C, 1, 137 (1963)
12 D. K. Yoo, D. Kim, and D. S. Lee, Macromol. Res., 13, 68 (2005)   과학기술학회마을   DOI
13 J. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 23, 2607 (2002)   DOI   ScienceOn
14 M. Kurata and W. H. Stockmayer, Adv. Polym. Sci., 3, 196 (1963)   DOI
15 H. Inagaki, H. Suzuki, and M. Kurata, J. Polym. Sci. C, 15, 409 (1966)
16 P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, New York, 1969
17 A. E. Tonelli and P. J. Flory, Macromolecules, 2, 225 (1969)   DOI
18 F. Castelli, B. Conti, U. Conte, and G. Puglisi, J. Control. Release, 40, 277 (1996)   DOI   ScienceOn