Intrinsic Viscosity and Unperturbed Dimension of Poly(DL-lactic acid) Solution

  • Lee, Jae-Sung (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sung-Chul (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hwan-Kwang (Department of Cosmetic Science, Chungwoon University)
  • Published : 2008.10.31

Abstract

The intrinsic viscosities were determined for poly(DL-lactic acid) (PDLLA) solutions in 1,2-dialkyl phthalate at temperatures ranging from 30 to $60^{\circ}C$. A series of dialkyl phthalate, in which the alkyl group was changed from methyl to propyl, was used as the solvent to control the solvent quality systematically. The intrinsic viscosity of the PDLLA solution was higher in the better quality solvent, with a higher molecular weight of PDLLA, and at lower temperatures. The unperturbed dimensions of the PDLLA molecule and polymer-solvent interaction parameter of PDLLA in dialkyl phthalate were deduced using extrapolation methods based on the temperature-dependent intrinsic viscosities. Slight shrinkage in the unperturbed chain dimension was observed, which resulted from a change in polymer conformation with temperature. It was also observed that the polymer-solvent interaction became more favorable with the dialkyl phthalate containing a shorter alkyl chain.

Keywords

References

  1. R. K. Kulkarni, E. G. Moore, A. F. Hegyeli, and F. Leonard, J. Biomed. Mater. Res., 5, 169 (1971)
  2. D. K. Yoo, D. Kim, and D. S. Lee, Macromol. Res., 13, 68 (2005) https://doi.org/10.1007/BF03219017
  3. Z. Gugala and S. Gogolewski, J. Biomed. Mater. Res., 49, 183 (2000) https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<183::AID-JBM5>3.0.CO;2-D
  4. K. Y. Cai, K. D. Yao, Y. L. Cui, Z. M. Yang, X. Q. Li, H. Q. Xie, T. W. Qing, and L. B. Gao, Biomaterials, 23, 1603 (2002) https://doi.org/10.1016/S0142-9612(01)00287-3
  5. J. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 23, 2607 (2002) https://doi.org/10.1016/S0142-9612(01)00400-8
  6. K. Park, H. J. Jung, J. J. Kim, K. D. Ahn, D. K. Han, and Y. M. Ju, Macromol. Res., 14, 552 (2006) https://doi.org/10.1007/BF03218723
  7. F. Castelli, B. Conti, U. Conte, and G. Puglisi, J. Control. Release, 40, 277 (1996) https://doi.org/10.1016/0168-3659(95)00195-6
  8. J. Tams, C. A. P. Joziasse, R. R. M. Bos, F. R. Rozema, D. W. Grijpma, and A. J. Pennings, Biomaterials, 16, 1409 (1995) https://doi.org/10.1016/0142-9612(95)96877-3
  9. J. S. Lee, H. K. Lee, J. Y. Kim, S. H. Hyon, and S. C. Kim, J. Appl. Polym. Sci., 88, 2224 (2003) https://doi.org/10.1002/app.11939
  10. J. S. Lee, H. K. Lee, and S. C. Kim, Polymer, 45, 4491 (2004) https://doi.org/10.1016/j.polymer.2004.04.036
  11. A. E. Tonelli and P. J. Flory, Macromolecules, 2, 225 (1969) https://doi.org/10.1021/ma60009a002
  12. D. A. Brant, A. E. Tonelli, and P. J. Flory, Macromolecules, 2, 228 (1969) https://doi.org/10.1021/ma60009a003
  13. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953
  14. W. H. Stockmayer and M. Fixman, J. Polym. Sci. C, 1, 137 (1963)
  15. M. Kurata and W. H. Stockmayer, Adv. Polym. Sci., 3, 196 (1963) https://doi.org/10.1007/BFb0050490
  16. G. C. Berry, J. Chem. Phys., 46, 1338 (1967) https://doi.org/10.1063/1.1840854
  17. H. Inagaki, H. Suzuki, and M. Kurata, J. Polym. Sci. C, 15, 409 (1966)
  18. P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, New York, 1969