• Title/Summary/Keyword: Molecule-molecule interaction

Search Result 271, Processing Time 0.028 seconds

With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing

  • Cho, Chung-Hyun;Lee, Keon Jin;Lee, Eun Hui
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.378-387
    • /
    • 2018
  • Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, $Ca^{2+}$ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic $Ca^{2+}$ level in skeletal muscle fibers is governed mainly by movements of $Ca^{2+}$ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated $Ca^{2+}$ entry (SOCE), a $Ca^{2+}$ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.

Identification of Amino Acid Residues Involved in the Interaction between Measles Virus Haemagglutin (MVH) and Its Human Cell Receptor(Signaling Lymphocyte Activation Molecule, SLAM)

  • Xu, Qin;Zhang, Peng;Hu, Chunling;Liu, Xin;Qi, Yipeng;Liu, Yingle
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.406-411
    • /
    • 2006
  • Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). The interaction between MV Haemagglutin (MVH) and SLAM is an initial step for MV entry. We have identified several novel SLAM binding sites at residues S429, T436 and H437 of MVH protein and MVH mutants in these residues dramatically decrease the ability to interaction with the cell surface SLAM and fail to co-precipitation with SLAM in vivo as well as malfunction in syncytium formation. At the same time, K58, S59 and H61 of SLAM was also identified to be critical for MVH and SLAM binding. Further, these residues may be useful targets for the development of measles therapy.

Electrostatic Interaction Between Oligopeptides and Phosphate Residues by Determination of Absolute Raman Intensities

  • Kye-Taek Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.286-289
    • /
    • 1991
  • The changed isotropic absolute Raman intensities of the phosphate residue in the complexes of positive charge oligopeptides, lys-lys, arg-arg, lys-aromat-lys, negative charge diethyl phosphoric acid (DEP) and polyriboadenylic acid{poly(rA)} were reported and discussed. Our measurements showed that the absolute intensities of phosphate stretch vibration in complexes were different according to the reaction partners. Due to the partial electrical charge and molecular structure of oligopeptides for the complex formation lysine can interact more strongly than arginine when the reaction partners have short chain and no steric hindrance. Owing to these reasons the intensity of phosphate stretching vibration is very sensitive according to the circumstance of reaction. From our results we could suggest that we can discriminate any one of the the lysine and arginine in the complicated biological molecule during interaction between nucleotides and proteins. The activity of reaction of two basical oligopeptides is not quite similar for complex formation in aqueous solution. The activity of dipeptides depends upon the structure of molecule and environment for complex formation. Aromatic ring contributes to electrostatic interaction in complexes. The amount of the absolute intensity for pure stacking interaction is smaller than electrostatic interaction in macromolecular complexes.

The Fluorescence Behavior of the Responsive Macrocycle by Aromatic Imine Molecules

  • Choi, Chang-Shik;Jeon, Ki-Seok;Lee, Ki-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.71-74
    • /
    • 2004
  • The macrocycle L exhibited a switch on-off behavior through the fluorescent responses by aromatic imine molecule 1 (X=H) / trifluoroacetic acid (TFA). In the 'switch on' state, it was supposed that the aromatic imine molecule 1 is in the cavity of macrocycle L and a photoinduced electron transfer (PET) from the nitrogen of azacrown part to the anthryl group is inhibited by the interaction between the aromatic imine molecule 1 and the azacrown part of macrocycle L. In the 'switch off' state, it was supposed that the protonated imine molecule 1 is induced by the continuous addition of TFA and a repulsion between the protonated azacrown part and the protonated imine molecule 1 is occurred. It was considered that this process induces the intermolecular PET from the protonated imine molecule 1 to the anthryl group of macrocycle L because of a proximity effect between the anthryl group and the protonated imine molecule 1. From the investigation of the transient emission decay curve, the macrocycle L showed three components (3.45 ns (79.72%), 0.61 ns (14.53%), and 0.10 ns (5.75%). When the imine molecule 1 was added in the macrocycle L as molar ratio=1:1, the first main component showed a little longer lifetime as 3.68 ns (82.75%) although the other two components were similar as 0.64 ns (14.28%) and 0.08 ns (2.96%). On the contrary, when the imine molecule 3 (X=C1) was added in the macrocycle L as molar ratio=l:1, all the three components were decreased such as 3.27 ns (69.83%), 0.44 ns (13.24%), and 0.06 ns (16.93%). The fluorescent pH titration of macrocycle L was carried out from pH=3 to pH=9. The macrocycle L and C $U^{2+}$- macrocycle L complex were intersected at about pH=5, while the E $u^{3+}$ -macrocycle L complex was intersected at about pH=5.5. In addtion, we investigated the fluorescence change of macrocycle L as a function of the substituent constant ($\sigma$$_{p}$$^{o}$) showing in the para-substituent with electron withdrawing groups (X=F, Cl) and electron donating groups (X=C $H_3$, OC $H_3$, N(C $H_3$)$_2$), respectively, as well as non-substituent (X=H).).ctively, as well as non-substituent (X=H).

  • PDF

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Molecular Dynamics Simulation for Bilayers of Alkyl Thiol Molecules at Solid-Solid Interfaces

  • 이송희;김한수;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1047-1054
    • /
    • 1998
  • We present the results of molecular dynamics simulations for three different systems of bilayers of long-chain alkyl thiol [S(CH2)15CH3] molecules on an solid-solid interface using the extended collapsed atom model for the chain-molecule. It is found that there exist two possible transitions: a continuous transition characterized by a change in molecular interaction between sites of different chain molecules with increasing area per molecule and a sudden transition from an ordered lattice-like state to a liquid-like state due to the lack of interactions between sites of chain molecules on different surfaces with increasing distance between two solid surfaces. The third system displays a smooth change in probability distribution characterized by the increment of gauche structure in the near-tail part of the chain with increasing area per molecule. The analyses of energetic results and chain conformation results demonstrate the characteristic change of chain structure of each system.

Reconstruction of α-helices in a Protein Molecule (단백질 분자 내 α-헬릭스의 재구성)

  • Kang, Beom Sik;Kim, Ku-Jin;Seo, U Deok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.163-168
    • /
    • 2014
  • In a protein molecule, ${\alpha}$-helices are important for protein structure, function, and binding to other proteins, so the analysis on the structure of helices has been researched. Since an interaction between two helices is evaluated based on their axes, massive errors in protein structure analysis would be caused if a curved or kinked long ${\alpha}$-helix is considered as a linear one. In this paper, we present an algorithm to reconstruct ${\alpha}$-helices in a protein molecule as a sequence of straight helices under given threshold.

The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation

  • Eun Ji Kang;Seung Min Jang;Ye Ji Lee;Ye Ji Jeong;You Jin Kim;Seong Su Kang;Eun Hee Ahn
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease.

Lattice Contraction Behavior Occurring in Ionic Clathrate Hydrate (이온성 크러스레이트 하이드레이트의 격자 수축 거동)

  • Kwon, Minchul;Cha, Minjun;Shin, Kyuchul;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.150.2-150.2
    • /
    • 2011
  • Unlike non-ionic clathrate hydrates stably formed by van der Waals interaction between a guest molecule and a surrounding host framework, ionic clathrate hydrates are stabilized by ionic interaction between an ionic guest molecule and the host water-framework. Here, we firstly described the stable entrapment of the superoxide ions in ${\gamma}$-irradiated $Me_4NOH+O_2$ hydrate. Owing to peculiar direct guest-guest ionic interaction, the lattice structure of ${\gamma}$-irradiated $Me_4NOH+O_2$ hydrate shows significant change of lattice contraction behavior even at relatively high temperature(120K). Particularly, we note that ionic-induced dimensional change is much greater than thermal-induced change. Such findings are expected to provide useful information for a better understanding of unrevealed nature of clathrate hydrate fields.

  • PDF