Browse > Article
http://dx.doi.org/10.5483/BMBRep.2018.51.8.128

With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing  

Cho, Chung-Hyun (Department of Pharmacology, College of Medicine, Seoul National University)
Lee, Keon Jin (Department of Physiology, College of Medicine, The Catholic University of Korea)
Lee, Eun Hui (Department of Physiology, College of Medicine, The Catholic University of Korea)
Publication Information
BMB Reports / v.51, no.8, 2018 , pp. 378-387 More about this Journal
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, $Ca^{2+}$ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic $Ca^{2+}$ level in skeletal muscle fibers is governed mainly by movements of $Ca^{2+}$ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated $Ca^{2+}$ entry (SOCE), a $Ca^{2+}$ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Keywords
Dihydropyridine receptors (DHPR); Excitation-contraction (EC) coupling; Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a); Store-operated $Ca^{2+}$ entry (SOCE); Stromal interaction molecule (STIM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR and Fleischer S (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268, 22992-22999
2 Avila G, Lee EH, Perez CF, Allen PD and Dirksen RT (2003) FKBP12 binding to RyR1 modulates excitationcontraction coupling in mouse skeletal myotubes. J Biol Chem 278, 22600-22608   DOI
3 Lee EH, Rho SH, Kwon SJ, Eom SH, Allen PD and Kim DH (2004) N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J Biol Chem 279, 26481-26488   DOI
4 Phimister AJ, Lango J, Lee EH et al (2007) Conformationdependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem 282, 8667-8677   DOI
5 Lee EH, Song DW, Lee JM, Meissner G, Allen PD and Kim DH (2006) Occurrence of atypical $Ca^{2+}$ transients in triadin-binding deficient-RYR1 mutants. Biochem Biophys Res Commun 351, 909-914   DOI
6 Lee JM, Rho SH, Shin DW et al (2004) Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J Biol Chem 279, 6994-7000   DOI
7 Guo W and Campbell KP (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J Biol Chem 270, 9027-9030   DOI
8 Lee KJ, Park CS, Woo JS, Kim DH, Ma J and Lee EH (2012) Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 428, 383-388   DOI
9 Cherednichenko G, Ward CW, Feng W et al (2008) Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 73, 1203-1212   DOI
10 Cho CH, Woo JS, Perez CF and Lee EH (2017) A focus on extracellular $Ca^{2+}$ entry into skeletal muscle. Exp Mol Med 49, e378   DOI
11 Feske S (2010) CRAC channelopathies. Pflugers Arch 460, 417-435   DOI
12 Lee EH, Woo JS, Hwang JH, Park JH and Cho CH (2013) Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 228, 1038-1044   DOI
13 Woo JS, Cho CH, Kim DH and Lee EH (2010) TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 42, 614-627   DOI
14 Luik RM, Wang B, Prakriya M, Wu MM and Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542   DOI
15 Lee KJ, Hyun C, Woo JS, Park CS, Kim DH and Lee EH (2014) Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 466, 987-1001   DOI
16 Lee EH, Cherednichenko G, Pessah IN and Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281, 10042-10048   DOI
17 Stiber J, Hawkins A, Zhang ZS et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10, 688-697   DOI
18 Zhou Y, Wang X, Wang X et al (2015) STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nat Commun 6, 8395   DOI
19 Luik RM, Wu MM, Buchanan J and Lewis RS (2006) The elementary unit of store-operated $Ca^{2+}$ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174, 815-825   DOI
20 Penna A, Demuro A, Yeromin AV et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116-120   DOI
21 Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876-890   DOI
22 Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF and Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11, 337-343   DOI
23 Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O and Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated $Ca^{2+}$ entry in skeletal muscle. Cell Calcium 47, 458-467   DOI
24 Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446, 284-287   DOI
25 Launikonis BS, Murphy RM and Edwards JN (2010) Toward the roles of store-operated $Ca^{2+}$ entry in skeletal muscle. Pflugers Arch 460, 813-823   DOI
26 Ma J and Pan Z (2003) Retrograde activation of storeoperated calcium channel. Cell Calcium 33, 375-384   DOI
27 Launikonis BS and Rios E (2007) Store-operated $Ca^{2+}$ entry during intracellular $Ca^{2+}$ release in mammalian skeletal muscle. J Physiol 583, 81-97   DOI
28 Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F and Dirksen RT (2013) Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 4, 2805   DOI
29 Darbellay B, Arnaudeau S, Bader CR, Konig S and Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive $Ca^{2+}$ release. J Cell Biol 194, 335-346   DOI
30 Hirata Y, Brotto M, Weisleder N et al (2006) Uncoupling store-operated $Ca^{2+}$ entry and altered $Ca^{2+}$ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys J 90, 4418-4427   DOI
31 Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA and Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated $Ca^{2+}$ channels. Proc Natl Acad Sci U S A 103, 4040-4045   DOI
32 Zhao X, Weisleder N, Han X et al (2006) Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 281, 33477-33486   DOI
33 Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8, 1003-1010   DOI
34 Stathopulos PB, Zheng L, Li GY, Plevin MJ and Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110-122   DOI
35 Ercan E, Chung SH, Bhardwaj R and Seedorf M (2012) Di-arginine signals and the K-rich domain retain the $Ca^{2+}$ sensor STIM1 in the endoplasmic reticulum. Traffic 13, 992-1003   DOI
36 Saitoh N, Oritani K, Saito K et al (2011) Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 112, 147-156   DOI
37 Grosse J, Braun A, Varga-Szabo D et al (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117, 3540-3550   DOI
38 Stathopulos PB, Zheng L and Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284, 728-732   DOI
39 Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C and Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108, 1337-1342   DOI
40 Marieb EN and Hoehn K (2010) Human anatomy & physiology, 8th ed, Benjamin Cummings, San Francisco
41 Covington ED, Wu MM and Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21, 1897-1907   DOI
42 Wang L, Zhang L, Li S et al (2015) Retrograde regulation of STIM1-Orai1 interaction and store-operated $Ca^{2+}$ entry by calsequestrin. Sci Rep 5, 11349   DOI
43 Zhang L, Wang L, Li S, Xue J and Luo D (2016) Calsequestrin-1 regulates store-operated $Ca^{2+}$ entry by inhibiting STIM1 aggregation. Cell Physiol Biochem 38, 2183-2193   DOI
44 Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57, 71-108   DOI
45 Zucchi R and Ronca-Testoni S (1997) The sarcoplasmic reticulum $Ca^{2+}$ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49, 1-51
46 Lee EH (2010) $Ca^{2+}$ channels and skeletal muscle diseases. Prog Biophys Mol Biol 103, 35-43   DOI
47 Lee EH, Kim DH and Allen PD (2006) Interplay between intra- and extracellular calcium ions. Mol Cells 21, 315-329
48 Putney JW Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12   DOI
49 Hoth M and Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353-356   DOI
50 Kurebayashi N and Ogawa Y (2001) Depletion of $Ca^{2+}$ in the sarcoplasmic reticulum stimulates $Ca^{2+}$ entry into mouse skeletal muscle fibres. J Physiol 533, 185-199   DOI
51 Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a $Ca^{2+}$ sensor that activates CRAC channels and migrates from the $Ca^{2+}$ store to the plasma membrane. Nature 437, 902-905   DOI
52 Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated $Ca^{2+}$ channel function. J Cell Biol 169, 435-445   DOI
53 Darbellay B, Arnaudeau S, Konig S et al (2009) STIM1-and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284, 5370-5380   DOI
54 Zhao X, Min CK, Ko JK et al (2010) Increased storeoperated $Ca^{2+}$ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99, 1556-1564   DOI
55 Lee HJ, Bae GU, Leem YE et al (2012) Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1. Mol Biol Cell 23, 1376-1387   DOI
56 Li T, Finch EA, Graham V et al (2012) STIM1-$Ca^{2+}$ signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol Cell Biol 32, 3009-3017   DOI
57 Zhao X, Weisleder N, Thornton A et al (2008) Compromised store-operated $Ca^{2+}$ entry in aged skeletal muscle. Aging Cell 7, 561-568   DOI
58 Zhao X, Yoshida M, Brotto L et al (2005) Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics 23, 72-78   DOI
59 Sopariwala DH, Pant M, Shaikh SA et al (2015) Sarcolipin overexpression improves muscle energetics and reduces fatigue. J Appl Physiol (1985) 118, 1050-1058   DOI
60 Boncompagni S, Michelucci A, Pietrangelo L, Dirksen RT and Protasi F (2017) Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep 7, 14286   DOI
61 Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2, e115   DOI
62 Hoth M and Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71, 237-271
63 Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S and Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285, 22437-22447   DOI
64 Phuong TTT and Kang TM (2015) Stromal interaction molecule 2 regulates C2C12 myoblast differentiation. Integr Med Res 4, 242-248   DOI
65 Antigny F, Sabourin J, Sauc S, Bernheim L, Koenig S and Frieden M (2017) TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive $Ca^{2+}$ release in human myotubes. Biochim Biophys Acta 1864, 806-813   DOI
66 Shin DW, Pan Z, Kim EK et al (2003) A retrograde signal from calsequestrin for the regulation of store-operated $Ca^{2+}$ entry in skeletal muscle. J Biol Chem 278, 3286-3292   DOI
67 Picard C, McCarl CA, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360, 1971-1980   DOI
68 Almada AE and Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17, 267-279   DOI
69 Berchtold MW, Brinkmeier H and Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80, 1215-1265   DOI
70 Woo JS, Hwang JH, Ko JK et al (2010) S165F mutation of junctophilin 2 affects $Ca^{2+}$ signalling in skeletal muscle. Biochem J 427, 125-134   DOI
71 Nagaraj RY, Nosek CM, Brotto MA et al (2000) Increased susceptibility to fatigue of slow- and fast-twitch muscles from mice lacking the MG29 gene. Physiol Genomics 4, 43-49   DOI
72 Yang X, Jin H, Cai X, Li S and Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109, 5657-5662   DOI
73 Brandman O, Liou J, Park WS and Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum $Ca^{2+}$ levels. Cell 131, 1327-1339   DOI
74 Wang X, Wang Y, Zhou Y et al (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5, 3183   DOI
75 Oh MR, Lee KJ, Huang M et al (2017) STIM2 regulates both intracellular $Ca^{2+}$ distribution and $Ca^{2+}$ movement in skeletal myotubes. Sci Rep 7, 17936   DOI
76 Cui B, Yang X, Li S et al (2013) The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 8, e74735   DOI
77 Liou J, Kim ML, Heo WD et al (2005) STIM is a $Ca^{2+}$ sensor essential for $Ca^{2+}$-store-depletion-triggered $Ca^{2+}$ influx. Curr Biol 15, 1235-1241   DOI
78 Fuchs S, Rensing-Ehl A, Speckmann C et al (2012) Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 188, 1523-1533   DOI
79 Goonasekera SA, Davis J, Kwong JQ et al (2014) Enhanced $Ca^{2+}$ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 23, 3706-3715   DOI
80 Morgan-Hughes JA (1998) Tubular aggregates in skeletal muscle: their functional significance and mechanisms of pathogenesis. Curr Opin Neurol 11, 439-442   DOI
81 Parker NJ, Begley CG, Smith PJ and Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253-256   DOI
82 Williams RT, Manji SS, Parker NJ et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357, 673-685   DOI
83 Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O and Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229   DOI
84 Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233   DOI
85 Vig M, Beck A, Billingsley JM et al (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16, 2073-2079   DOI
86 Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185   DOI
87 Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated $Ca^{2+}$ entry. Science 312, 1220-1223   DOI
88 Ito K, Komazaki S, Sasamoto K et al (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154, 1059-1067   DOI
89 Hou X, Pedi L, Diver MM and Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313   DOI
90 Stathopulos PB, Schindl R, Fahrner M et al (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4, 2963   DOI
91 Rothberg BS, Wang Y and Gill DL (2013) Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 6, pe9   DOI
92 Pan Z, Yang D, Nagaraj RY et al (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4, 379-383   DOI
93 Brotto MA, Nagaraj RY, Brotto LS, Takeshima H, Ma JJ and Nosek TM (2004) Defective maintenance of intracellular $Ca^{2+}$ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res 14, 373-378   DOI
94 Bohm J, Chevessier F, Koch C et al (2014) Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 51, 824-833   DOI
95 Tasca G, D'Amico A, Monforte M et al (2015) Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1. Neuromuscul Disord 25, 898-903   DOI
96 Okuma H, Saito F, Mitsui J et al (2016) Tubular aggregate myopathy caused by a novel mutation in the cytoplasmic domain of STIM1. Neurol Genet 2, e50   DOI
97 Walter MC, Rossius M, Zitzelsberger M et al (2015) 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 25, 577-584   DOI
98 Bohm J, Chevessier F, Maues De Paula A et al (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92, 271-278   DOI
99 MacLennan DH and Phillips MS (1992) Malignant hyperthermia. Science 256, 789-794   DOI
100 Nelson TE (2002) Malignant hyperthermia: a pharmacogenetic disease of $Ca^{{+}{+}}$ regulating proteins. Curr Mol Med 2, 347-369   DOI
101 Edwards JN, Friedrich O, Cully TR, von Wegner F, Murphy RM and Launikonis BS (2010) Upregulation of store-operated $Ca^{2+}$ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 299, C42-50   DOI
102 Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated $Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348   DOI
103 Duke AM, Hopkins PM, Calaghan SC, Halsall JP and Steele DS (2010) Store-operated $Ca^{2+}$ entry in malignant hyperthermia-susceptible human skeletal muscle. J Biol Chem 285, 25645-25653   DOI
104 Dainese M, Quarta M, Lyfenko AD et al (2009) Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 23, 1710-1720   DOI
105 Yarotskyy V, Protasi F and Dirksen RT (2013) Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633   DOI
106 Chelu MG, Goonasekera SA, Durham WJ et al (2006) Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J 20, 329-330   DOI
107 Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2, 25   DOI
108 Ervasti JM and Campbell KP (1993) Dystrophin-associated glycoproteins: their possible roles in the pathogenesis of Duchenne muscular dystrophy. Mol Cell Biol Hum Dis Ser 3, 139-166
109 Boittin FX, Petermann O, Hirn C et al (2006) $Ca^{2+}$-independent phospholipase A2 enhances store-operated $Ca^{2+}$ entry in dystrophic skeletal muscle fibers. J Cell Sci 119, 3733-3742   DOI
110 Zhao X, Moloughney JG, Zhang S, Komazaki S and Weisleder N (2012) Orai1 mediates exacerbated $Ca^{2+}$ entry in dystrophic skeletal muscle. PLoS One 7, e49862   DOI
111 Onopiuk M, Brutkowski W, Young C et al (2015) Store-operated calcium entry contributes to abnormal $Ca^{2+}$ signalling in dystrophic mdx mouse myoblasts. Arch Biochem Biophys 569, 1-9   DOI
112 Brandl CJ, deLeon S, Martin DR and MacLennan DH (1987) Adult forms of the $Ca^{2+}$ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262, 3768-3774
113 Komazaki S, Nishi M, Takeshima H and Nakamura H (2001) Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev Growth Differ 43, 717-723   DOI
114 Nishi M, Komazaki S, Kurebayashi N et al (1999) Abnormal features in skeletal muscle from mice lacking mitsugumin29. J Cell Biol 147, 1473-1480   DOI
115 Shamoo AE and MacLennan DH (1974) A $Ca^{{+}{+}}$-dependent and -selective ionophore as part of the $Ca^{{+}{+}}$ plus $Mg^{{+}{+}}$-dependent adenosinetriphosphatase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A 71, 3522-3526   DOI
116 Murphy RM, Larkins NT, Mollica JP, Beard NA and Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal $Ca^{2+}$ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587, 443-460   DOI
117 Jayaraman T, Brillantes AM, Timerman AP et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267, 9474-9477
118 Takamori M (2008) Autoantibodies against TRPC3 and ryanodine receptor in myasthenia gravis. J Neuroimmunol 200, 142-144   DOI
119 Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated $Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348   DOI
120 Lee KJ, Woo JS, Hwang JH et al (2013) STIM1 negatively regulates $Ca^{2+}$ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 453, 187-200   DOI
121 Weisleder N, Takizawa N, Lin P et al (2012) Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4, 139ra185
122 Zhang BT, Yeung SS, Cheung KK, Chai ZY and Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 49, 691-699   DOI
123 Cai C, Masumiya H, Weisleder N et al (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56-64   DOI
124 He B, Tang RH, Weisleder N et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20, 727-735   DOI
125 Cai C, Weisleder N, Ko JK et al (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem 284, 15894-15902   DOI
126 Ahn MK, Lee KJ, Cai C et al (2016) Mitsugumin 53 regulates extracellular $Ca^{2+}$ entry and intracellular $Ca^{2+}$ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 6, 36909   DOI
127 Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H and Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 1089-1096   DOI
128 Yang T, Allen PD, Pessah IN and Lopez JR (2007) Enhanced excitation-coupled calcium entry in myotubes is associated with expression of RyR1 malignant hyperthermia mutations. J Biol Chem 282, 37471-37478   DOI